论文标题
几乎几乎是二线嵌入Banach空间的嵌入和适当的子集 - M.I.定理的扩展。奥斯特罗夫斯基
Almost bi-Lipschitz embeddings and proper subsets of a Banach space -- An extension of a theorem by M.I. Ostrovskii
论文作者
论文摘要
令x和y为两个无限二维Banach空间。如果x在y的每个有限二维子空间中都可以有限地表示,那么从某种意义上说,x几乎是bi-lipschitz的任何适当子集都嵌入y中,从而接近F. Baudier和G. Lancien。这是M.I.证明的结果的扩展。 Ostrovskii用于本地有限的子集。
Let X and Y be two infinite-dimensional Banach spaces. If X is crudely finitely representable in every finite-codimensional subspace of Y, then any proper subset of X almost bi-Lipschitz embeds into Y, in a sense quite close to that of F. Baudier and G. Lancien. This is an extension of a result proved by M.I. Ostrovskii for locally finite subsets.