论文标题

神经网络动力学系统的一声达到性分析

One-Shot Reachability Analysis of Neural Network Dynamical Systems

论文作者

Chen, Shaoru, Preciado, Victor M., Fazlyab, Mahyar

论文摘要

神经网络(NN)在机器人系统中的出现驱动了神经网络动力学系统(NNDS)的安全验证方法的开发。通过NN控制器,计划者或感知对闭环的动力学系统的可及性分析的递归技术可以通过界定NN的输出并传播这些NN输出的界限,使NND的可触及度集过高。但是,这种递归的可及性分析可能会遭受复杂错误,而在更长的地平线上迅速变得过于保守。在这项工作中,我们证明了直接验证传开的NND的替代单弹性可及性分析框架可以大大减轻基于Layswise抽象构建的通用类NN验证方法的复合错误。我们的分析是由于某些NN验证方法在一击中的应用而不是递归时会产生较宽的界限。在我们的分析中,我们表征了带有一般计算图的NND的递归和一弹框架之间的性能差距。通过在卡车杆系统上的数值示例证明了单发分析的适用性。

The arising application of neural networks (NN) in robotic systems has driven the development of safety verification methods for neural network dynamical systems (NNDS). Recursive techniques for reachability analysis of dynamical systems in closed-loop with a NN controller, planner, or perception can over-approximate the reachable sets of the NNDS by bounding the outputs of the NN and propagating these NN output bounds forward. However, this recursive reachability analysis may suffer from compounding errors, rapidly becoming overly conservative over a longer horizon. In this work, we prove that an alternative one-shot reachability analysis framework which directly verifies the unrolled NNDS can significantly mitigate the compounding errors for a general class of NN verification methods built on layerwise abstraction. Our analysis is motivated by the fact that certain NN verification methods give rise to looser bounds when applied in one shot than recursively. In our analysis, we characterize the performance gap between the recursive and one-shot frameworks for NNDS with general computational graphs. The applicability of one-shot analysis is demonstrated through numerical examples on a cart-pole system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源