论文标题

本地分布式舍入:概括,匹配,设定盖以及其他

Local Distributed Rounding: Generalized to MIS, Matching, Set Cover, and Beyond

论文作者

Faour, Salwa, Ghaffari, Mohsen, Grunau, Christoph, Kuhn, Fabian, Rozhoň, Václav

论文摘要

我们开发了一种一般的确定性分布方法,用于局部圆形圆形的图形问题解决方案,可以将分析分解为分析顶点的对。大致说明,该方法可以将顶点的分数/概率标签分配转换为顶点的积分/确定性标签分配,同时大约保留了一个潜在函数,该函数是函数的线性组合,每个函数都取决于最多两个顶点(通常在配对分析中通常满足某些条件)。该方法统一并显着将先前的工作概括为确定性的局部圆形技术[Ghaffari,Kuhn focs'21; Harris focs'19; Fischer,Ghaffari,Kuhn Focs'17; fischer Disc'17]以获取组合图问题的Polyogarithmic-armogarithmic确定性分布解决方案。我们的一般舍入结果使我们能够在本地和有效地确定一系列本地图问题的分布式算法,包括最大独立集(MIS),最大重量独立集合和最小成本集盖近似值。 As a highlight, we in particular obtain a deterministic $O(\log^2Δ\cdot\log n)$-round algorithm for computing an MIS in the LOCAL model and an almost as efficient $O(\log^2Δ\cdot\log\logΔ\cdot\log n)$-round deterministic MIS algorithm in the CONGEST model.结果,最广为人知的确定性分布式时间复杂性是四个最广泛研究的分布式对称性破坏问题(MIS,最大匹配,$(δ+1)$ - $ - 顶点颜色和$(2Δ-1)$ - 边缘着色)现在是$ O(\ log log^log^2δ\ cd cdot \ log \ log n)$。我们的新MIS算法也是第一个直接的polygarogarithmic dimic确定性分布式分布式MIS算法,该算法不是基于网络分解。

We develop a general deterministic distributed method for locally rounding fractional solutions of graph problems for which the analysis can be broken down into analyzing pairs of vertices. Roughly speaking, the method can transform fractional/probabilistic label assignments of the vertices into integral/deterministic label assignments for the vertices, while approximately preserving a potential function that is a linear combination of functions, each of which depends on at most two vertices (subject to some conditions usually satisfied in pairwise analyses). The method unifies and significantly generalizes prior work on deterministic local rounding techniques [Ghaffari, Kuhn FOCS'21; Harris FOCS'19; Fischer, Ghaffari, Kuhn FOCS'17; Fischer DISC'17] to obtain polylogarithmic-time deterministic distributed solutions for combinatorial graph problems. Our general rounding result enables us to locally and efficiently derandomize a range of distributed algorithms for local graph problems, including maximal independent set (MIS), maximum-weight independent set approximation, and minimum-cost set cover approximation. As a highlight, we in particular obtain a deterministic $O(\log^2Δ\cdot\log n)$-round algorithm for computing an MIS in the LOCAL model and an almost as efficient $O(\log^2Δ\cdot\log\logΔ\cdot\log n)$-round deterministic MIS algorithm in the CONGEST model. As a result, the best known deterministic distributed time complexity of the four most widely studied distributed symmetry breaking problems (MIS, maximal matching, $(Δ+1)$-vertex coloring, and $(2Δ-1)$-edge coloring) is now $O(\log^2Δ\cdot\log n)$. Our new MIS algorithm is also the first direct polylogarithmic-time deterministic distributed MIS algorithm, which is not based on network decomposition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源