论文标题
使用高带宽感应和驱动,用反射来强大的自主抓握
Towards Robust Autonomous Grasping with Reflexes Using High-Bandwidth Sensing and Actuation
论文作者
论文摘要
现代的机器人操纵系统不属于人类操纵技巧,部分原因是它们依赖于围绕视觉数据的关闭反馈循环,从而降低了系统的带宽和速度。通过开发依赖于高带宽力,接触和接近数据的自主握力反射,可以提高整体系统速度和鲁棒性,同时减少对视力数据的依赖。我们正在开发一个新的系统,围绕一个低渗透,高速手臂,用敏捷的手指建立,该系统结合了一个高级轨迹计划器,以小于1 Hz的速度运行,低级自主反射控制器的运行量超过300 Hz。我们通过将成功的基线控制器和反射握把控制器的变化的成功抓取器的体积进行比较,从而表征了反射系统,发现我们的控制器将成功的Grasps集扩大了55%,相对于基线而言。我们还使用简单的基于视觉的计划者在自主杂波清除任务中部署了反身抓握控制器,在清除100多个项目的同时,达到了超过90%的成功率。
Modern robotic manipulation systems fall short of human manipulation skills partly because they rely on closing feedback loops exclusively around vision data, which reduces system bandwidth and speed. By developing autonomous grasping reflexes that rely on high-bandwidth force, contact, and proximity data, the overall system speed and robustness can be increased while reducing reliance on vision data. We are developing a new system built around a low-inertia, high-speed arm with nimble fingers that combines a high-level trajectory planner operating at less than 1 Hz with low-level autonomous reflex controllers running upwards of 300 Hz. We characterize the reflex system by comparing the volume of the set of successful grasps for a naive baseline controller and variations of our reflexive grasping controller, finding that our controller expands the set of successful grasps by 55% relative to the baseline. We also deploy our reflexive grasping controller with a simple vision-based planner in an autonomous clutter clearing task, achieving a grasp success rate above 90% while clearing over 100 items.