论文标题

削减:多根无监督的医学图像细分的深度学习和拓扑框架

CUTS: A Deep Learning and Topological Framework for Multigranular Unsupervised Medical Image Segmentation

论文作者

Liu, Chen, Amodio, Matthew, Shen, Liangbo L., Gao, Feng, Avesta, Arman, Aneja, Sanjay, Wang, Jay C., Del Priore, Lucian V., Krishnaswamy, Smita

论文摘要

分割医学图像对于促进患者诊断和定量研究至关重要。一个主要的限制因素是缺乏标记的数据,因为为每组新的成像数据和任务获得专家注释可能是劳动力密集的,并且在注释者之间是不一致的。我们提出了削减,这是一个无监督的深度学习框架,用于医学图像细分。剪切分为两个阶段。对于每个图像,它通过图像内图对比度学习和局部贴片重建产生嵌入图。然后,这些嵌入在与数据拓扑相对应的动态粒度水平上分配。切割产生一系列的粗到五粒分割,突出了各种粒度的特征。我们将切割剪切到视网膜底面图像和两种类型的脑MRI图像上,以描绘不同尺度的结构和模式。与现有的无监督方法相比,当针对预定义的解剖面膜进行评估时,切割的骰子系数和Hausdorff距离至少提高了10%。最后,剪切显示了在巨大标记的数据集上预先训练的任何模型(SAM,MEDSAM,SAM-MED2D)的段表现。

Segmenting medical images is critical to facilitating both patient diagnoses and quantitative research. A major limiting factor is the lack of labeled data, as obtaining expert annotations for each new set of imaging data and task can be labor intensive and inconsistent among annotators. We present CUTS, an unsupervised deep learning framework for medical image segmentation. CUTS operates in two stages. For each image, it produces an embedding map via intra-image contrastive learning and local patch reconstruction. Then, these embeddings are partitioned at dynamic granularity levels that correspond to the data topology. CUTS yields a series of coarse-to-fine-grained segmentations that highlight features at various granularities. We applied CUTS to retinal fundus images and two types of brain MRI images to delineate structures and patterns at different scales. When evaluated against predefined anatomical masks, CUTS improved the dice coefficient and Hausdorff distance by at least 10% compared to existing unsupervised methods. Finally, CUTS showed performance on par with Segment Anything Models (SAM, MedSAM, SAM-Med2D) pre-trained on gigantic labeled datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源