论文标题
使用低分辨率红外摄像头保存隐私的人检测
Privacy-Preserving Person Detection Using Low-Resolution Infrared Cameras
论文作者
论文摘要
在智能建筑管理中,了解房间的人数及其位置对于更好地控制其照明,通风和供暖至关重要,而成本降低和改善了舒适性。这通常是通过使用安装在房间天花板上的紧凑型嵌入式设备并集成低分辨率红外摄像机的人员来实现的,从而掩盖了每个人的身份。但是,为了准确检测,最先进的深度学习模型仍需要使用大量注释的图像数据集进行监督培训。在本文中,我们研究了适用于基于低分辨率红外图像的人检测的具有成本效益的方法。结果表明,对于此类图像,我们可以减少监督和计算的量,同时仍然达到高水平的检测准确性。从需要图像中每个人的边界框注释的单杆探测器,到仅依靠不包含人的未标记图像的自动编码器,可以在注释成本方面节省大量,以及计算成本较低的模型。我们在具有低分辨率红外图像的两个具有挑战性的顶级数据集上验证了这些实验发现。
In intelligent building management, knowing the number of people and their location in a room are important for better control of its illumination, ventilation, and heating with reduced costs and improved comfort. This is typically achieved by detecting people using compact embedded devices that are installed on the room's ceiling, and that integrate low-resolution infrared camera, which conceals each person's identity. However, for accurate detection, state-of-the-art deep learning models still require supervised training using a large annotated dataset of images. In this paper, we investigate cost-effective methods that are suitable for person detection based on low-resolution infrared images. Results indicate that for such images, we can reduce the amount of supervision and computation, while still achieving a high level of detection accuracy. Going from single-shot detectors that require bounding box annotations of each person in an image, to auto-encoders that only rely on unlabelled images that do not contain people, allows for considerable savings in terms of annotation costs, and for models with lower computational costs. We validate these experimental findings on two challenging top-view datasets with low-resolution infrared images.