论文标题

积分arnol的猜想

Integral Arnol'd Conjecture

论文作者

Rezchikov, Semon

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We explain how to adapt the methods of Abouzaid-McLean-Smith to the setting of Hamiltonian Floer theory. We develop a language around equivariant ``$\langle k \rangle$-manifolds'', which are a type of manifold-with-corners that suffices to capture the combinatorics of Floer-theoretic constructions. We describe some geometry which allows us to straightforwardly adapt Lashofs's stable equivariant smoothing theory and Bau-Xu's theory of FOP-perturbations to $\langle k \rangle$-manifolds. This allows us to compatibly smooth global Kuranishi charts on all Hamiltonian Floer trajectories at once, in order to extract a Floer complex and prove the Arnol'd conjecture over the integers. We also make first steps towards a further development of the theory, outlining the analog of bifurcation analysis in this setting, which can give short independence proofs of the independence of Floer-theoretic invariants of all choices involved in their construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源