论文标题
部分可观测时空混沌系统的无模型预测
Newsvendor Conditional Value-at-Risk Minimisation: a Feature-based Approach under Adaptive Data Selection
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The classical risk-neutral newsvendor problem is to decide the order quantity that maximises the expected profit. Some recent works have proposed an alternative model, in which the goal is to minimise the conditional value-at-risk (CVaR), a different but very much important risk measure in financial risk management. In this paper, we propose a feature-based non-parametric approach to Newsvendor CVaR minimisation under adaptive data selection (NPC). The NPC method is simple and general. It can handle minimisation with both linear and nonlinear profits, and requires no prior knowledge of the demand distribution. Our main contribution is two-fold. Firstly, NPC uses a feature-based approach. The estimated parameters of NPC can be easily applied to prescriptive analytic to provide additional operational insights. Secondly, unlike common non-parametric methods, our NPC method uses an adaptive data selection criterion and requires only a small proportion of data (only data from two tails), significantly reducing the computational effort. Results from both numerical and real-life experiments confirm that NPC is robust with regard to difficult and large data structures. Using fewer data points, the computed order quantities from NPC lead to equal or less downside loss in extreme cases than competing methods.