论文标题

部分可观测时空混沌系统的无模型预测

Uncertainty-aware Perception Models for Off-road Autonomous Unmanned Ground Vehicles

论文作者

Yang, Zhaoyuan, Tan, Yewteck, Sen, Shiraj, Reimann, Johan, Karigiannis, John, Yousefhussien, Mohammed, Virani, Nurali

论文摘要

正在为军事和商业用途开发越野自动驾驶的无人接地车辆(UGV),以在偏远地区提供关键的供应,帮助绘制和监视,并在有争议的环境中协助战争战士。由于越野环境的复杂性以及地形,照明条件,昼夜和季节性变化的变化,用于感知环境的模型必须处理大量输入可变性。当前的数据集用于训练越野自动导航的感知模型在季节,位置,语义类别以及一天中的时间中缺乏多样性。我们测试了以下假设:由于输入分布漂移,在单个数据集上训练的模型可能无法推广到其他越野导航数据集和新位置。此外,我们研究了如何组合多个数据集来训练基于语义分割的环境感知模型,并表明训练模型以捕获不确定性可以通过显着的余量提高模型性能。我们将蒙版的方法扩展到语义分割任务的不确定性量化方法,并将其与蒙特卡洛辍学和标准基线进行比较。最后,我们测试了在新测试环境中从UGV平台收集的数据的方法。我们表明,具有不确定性量化的开发的感知模型可以在UGV上可用,以支持在线感知和导航任务。

Off-road autonomous unmanned ground vehicles (UGVs) are being developed for military and commercial use to deliver crucial supplies in remote locations, help with mapping and surveillance, and to assist war-fighters in contested environments. Due to complexity of the off-road environments and variability in terrain, lighting conditions, diurnal and seasonal changes, the models used to perceive the environment must handle a lot of input variability. Current datasets used to train perception models for off-road autonomous navigation lack of diversity in seasons, locations, semantic classes, as well as time of day. We test the hypothesis that model trained on a single dataset may not generalize to other off-road navigation datasets and new locations due to the input distribution drift. Additionally, we investigate how to combine multiple datasets to train a semantic segmentation-based environment perception model and we show that training the model to capture uncertainty could improve the model performance by a significant margin. We extend the Masksembles approach for uncertainty quantification to the semantic segmentation task and compare it with Monte Carlo Dropout and standard baselines. Finally, we test the approach against data collected from a UGV platform in a new testing environment. We show that the developed perception model with uncertainty quantification can be feasibly deployed on an UGV to support online perception and navigation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源