论文标题

盲目的高光谱脉络

Entropic Descent Archetypal Analysis for Blind Hyperspectral Unmixing

论文作者

Zouaoui, Alexandre, Muhawenayo, Gedeon, Rasti, Behnood, Chanussot, Jocelyn, Mairal, Julien

论文摘要

在本文中,我们引入了一种新算法,该算法基于原型分析,用于盲目的高光谱脉冲,假设结束成员的线性混合。原型分析是该任务的自然表述。此方法不需要纯像素(即包含单个材料的像素),而是将末端成员表示为原始高光谱图像中几个像素的凸组合。我们的方法利用了熵梯度下降策略,(i)比传统的原型分析算法为高光谱脉冲提供了更好的解决方案,并且(ii)可实现有效的GPU实现。由于运行我们算法的一个实例很快,我们还提出了一个结合机制以及适当的模型选择程序,该过程使我们的方法可鲁棒至超参数选择,同时保持计算复杂性合理。通过使用六个标准的真实数据集,我们表明我们的方法的表现优于最先进的矩阵分解和最新的深度学习方法。我们还提供开源Pytorch实施:https://github.com/inria-thoth/edaa。

In this paper, we introduce a new algorithm based on archetypal analysis for blind hyperspectral unmixing, assuming linear mixing of endmembers. Archetypal analysis is a natural formulation for this task. This method does not require the presence of pure pixels (i.e., pixels containing a single material) but instead represents endmembers as convex combinations of a few pixels present in the original hyperspectral image. Our approach leverages an entropic gradient descent strategy, which (i) provides better solutions for hyperspectral unmixing than traditional archetypal analysis algorithms, and (ii) leads to efficient GPU implementations. Since running a single instance of our algorithm is fast, we also propose an ensembling mechanism along with an appropriate model selection procedure that make our method robust to hyper-parameter choices while keeping the computational complexity reasonable. By using six standard real datasets, we show that our approach outperforms state-of-the-art matrix factorization and recent deep learning methods. We also provide an open-source PyTorch implementation: https://github.com/inria-thoth/EDAA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源