论文标题
从预先训练的LLM中选择更好的样本:关于问题产生的案例研究
Selecting Better Samples from Pre-trained LLMs: A Case Study on Question Generation
论文作者
论文摘要
近年来,大型语言模型(LLMS)在自然语言产生中表现出了令人印象深刻的能力。提高发电多样性的一种常见做法是从模型中采样多个输出。但是,缺乏一种简单,坚固的方式来从这些随机样品中选择最佳输出。作为一个案例研究,在问题产生的背景下,我们提出了两种基于迅速的方法来从一组LLM生成的候选人中选择高质量问题。我们的方法在1)限制下起作用,一个黑框(不可模拟的)问题生成模型和2)缺乏访问人类宣传的参考文献 - 这两者都是现实世界部署LLMS的现实局限性。通过自动和人类的评估,我们从经验上证明,我们的方法可以有效地选择比贪婪产生更高质量的问题。
Large Language Models (LLMs) have in recent years demonstrated impressive prowess in natural language generation. A common practice to improve generation diversity is to sample multiple outputs from the model. However, there lacks a simple and robust way of selecting the best output from these stochastic samples. As a case study framed in the context of question generation, we propose two prompt-based approaches to selecting high-quality questions from a set of LLM-generated candidates. Our method works under the constraints of 1) a black-box (non-modifiable) question generation model and 2) lack of access to human-annotated references -- both of which are realistic limitations for real-world deployment of LLMs. With automatic as well as human evaluations, we empirically demonstrate that our approach can effectively select questions of higher qualities than greedy generation.