论文标题

用大地高斯保存流量将标准化流量变成蒙格图

Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows

论文作者

Morel, Guillaume, Drumetz, Lucas, Benaïchouche, Simon, Courty, Nicolas, Rousseau, François

论文摘要

标准化流量(NF)是基于强大可能性的生成模型,能够在表达性和拖延性之间进行对复杂密度建模的权衡。现在已经建立的研究途径利用了最佳运输(OT),并寻找Monge地图,即源和目标分布之间努力最少的模型。本文介绍了一种基于Brenier的极性分解定理的方法,该方法将任何受过训练的NF转换为更高效率的版本而不改变最终密度。我们通过学习源(高斯)分布的重新排列来最大程度地减少源和最终密度之间的OT成本。由于Euler的方程式,我们进一步限制了导致估计的Monge图的路径,以置于体积扩散差异的空间中。所提出的方法导致几种现有型号的OT成本降低的平滑流,而不会影响模型性能。

Normalizing Flows (NF) are powerful likelihood-based generative models that are able to trade off between expressivity and tractability to model complex densities. A now well established research avenue leverages optimal transport (OT) and looks for Monge maps, i.e. models with minimal effort between the source and target distributions. This paper introduces a method based on Brenier's polar factorization theorem to transform any trained NF into a more OT-efficient version without changing the final density. We do so by learning a rearrangement of the source (Gaussian) distribution that minimizes the OT cost between the source and the final density. We further constrain the path leading to the estimated Monge map to lie on a geodesic in the space of volume-preserving diffeomorphisms thanks to Euler's equations. The proposed method leads to smooth flows with reduced OT cost for several existing models without affecting the model performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源