论文标题
低频的光力学冷却和惯性传感
Optomechanical cooling and inertial sensing at low frequencies
论文作者
论文摘要
本文提出了惯性传感器设计,以实现高灵敏度和较大的动态范围。通过将光腔读数系统与单层制造的机械谐振器相结合,获得了高加速度的灵敏度。高敏性杂项干涉仪同时监测低固定性谐振器的大量动态范围的测试质量。通过使用强度调节的激光通过辐射压力相互作用,通过光学反馈冷却对测试质量进行调节带宽。分析了反馈系统的传输增益,以优化可以达到最低冷却温度的系统参数。为了实际实施惯性传感器,我们提出了一种层叠的冷却机制,以提高冷却效率,同时在低光功率水平下运行。整个系统布局提出了紧凑且轻巧的集成设计。
An inertial sensor design is proposed in this paper to achieve high sensitivity and large dynamic range in the sub-Hz frequency regime. High acceleration sensitivity is obtained by combining optical cavity readout systems with monolithically fabricated mechanical resonators. A high-sensitivity heterodyne interferometer simultaneously monitors the test mass with an extensive dynamic range for low-stiffness resonators. The bandwidth is tuned by optical feedback cooling to the test mass via radiation pressure interaction using an intensity-modulated laser. The transfer gain of the feedback system is analyzed to optimize system parameters towards the minimum cooling temperature that can be achieved. To practically implement the inertial sensor, we propose a cascaded cooling mechanism to improve cooling efficiency while operating at low optical power levels. The overall system layout presents an integrated design that is compact and lightweight.