论文标题
通过密度比率估算的批次贝叶斯优化和保证
Batch Bayesian optimisation via density-ratio estimation with guarantees
论文作者
论文摘要
贝叶斯优化(BO)算法在涉及昂贵的黑盒功能的应用中表现出了显着的成功。传统上,BO被设置为一个顺序决策过程,该过程通过采集函数和先前的功能(例如高斯过程)来估计查询点的实用性。然而,最近,通过密度比率估计(BORE)对BO进行重新制定允许将采集函数重新诠释为概率二进制分类器,从而消除了对函数的明确先验的需求,并提高了可伸缩性。在本文中,我们对孔的遗憾进行了理论分析,并通过改进的不确定性估计来扩展该算法。我们还表明,通过将问题重新提交为近似贝叶斯推断,可以自然地扩展到批处理优化设置。所得算法配备了理论性能保证,并在一系列实验中对其他批次和顺序BO基准进行了评估。
Bayesian optimisation (BO) algorithms have shown remarkable success in applications involving expensive black-box functions. Traditionally BO has been set as a sequential decision-making process which estimates the utility of query points via an acquisition function and a prior over functions, such as a Gaussian process. Recently, however, a reformulation of BO via density-ratio estimation (BORE) allowed reinterpreting the acquisition function as a probabilistic binary classifier, removing the need for an explicit prior over functions and increasing scalability. In this paper, we present a theoretical analysis of BORE's regret and an extension of the algorithm with improved uncertainty estimates. We also show that BORE can be naturally extended to a batch optimisation setting by recasting the problem as approximate Bayesian inference. The resulting algorithms come equipped with theoretical performance guarantees and are assessed against other batch and sequential BO baselines in a series of experiments.