论文标题
文本揭示器:通过模型反转攻击变压器的私人文本重建
Text Revealer: Private Text Reconstruction via Model Inversion Attacks against Transformers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Text classification has become widely used in various natural language processing applications like sentiment analysis. Current applications often use large transformer-based language models to classify input texts. However, there is a lack of systematic study on how much private information can be inverted when publishing models. In this paper, we formulate \emph{Text Revealer} -- the first model inversion attack for text reconstruction against text classification with transformers. Our attacks faithfully reconstruct private texts included in training data with access to the target model. We leverage an external dataset and GPT-2 to generate the target domain-like fluent text, and then perturb its hidden state optimally with the feedback from the target model. Our extensive experiments demonstrate that our attacks are effective for datasets with different text lengths and can reconstruct private texts with accuracy.