论文标题

从Planck Compton $ -Y $参数地图推断出星系集群质量的深度学习方法

A Deep Learning Approach to Infer Galaxy Cluster Masses from Planck Compton$-y$ parameter maps

论文作者

de Andres, Daniel, Cui, Weiguang, Ruppin, Florian, De Petris, Marco, Yepes, Gustavo, Gianfagna, Giulia, Lahouli, Ichraf, Aversano, Gianmarco, Dupuis, Romain, Jarraya, Mahmoud, Vega-Ferrero, Jesús

论文摘要

星系簇是研究宇宙演变的有用实验室,并且准确测量其总质量使我们能够约束重要的宇宙学参数。但是,从使用不同方法和光谱带的观测值估算质量会引入各种系统误差。本文评估了使用卷积神经网络(CNN)可靠,准确地从普朗克卫星提供的Compton-Y参数图中可靠,准确地推断出星系簇的质量。 CNN经过由星系簇的流体动力模拟产生的模拟图像训练,并考虑了普朗克的观察局限性。我们观察到,CNN方法不受通常的观察假设的约束,因此不受相同偏见的影响。通过将受过训练的CNN应用于真实的普朗克地图,我们发现群集质量与15%偏差的普朗克测量值兼容。最后,我们表明,可以通过普朗克质量中众所周知的静水平衡假设以及Y500-M500缩放定律中的不同参数来解释这种质量偏见。这项工作强调,在流体动力模拟的支持下,CNN是一种有前途且独立的工具,用于估计具有高精度的群集质量,可以扩展到其他调查以及其他频段的观察。

Galaxy clusters are useful laboratories to investigate the evolution of the Universe, and accurately measuring their total masses allows us to constrain important cosmological parameters. However, estimating mass from observations that use different methods and spectral bands introduces various systematic errors. This paper evaluates the use of a Convolutional Neural Network (CNN) to reliably and accurately infer the masses of galaxy clusters from the Compton-y parameter maps provided by the Planck satellite. The CNN is trained with mock images generated from hydrodynamic simulations of galaxy clusters, with Planck's observational limitations taken into account. We observe that the CNN approach is not subject to the usual observational assumptions, and so is not affected by the same biases. By applying the trained CNNs to the real Planck maps, we find cluster masses compatible with Planck measurements within a 15% bias. Finally, we show that this mass bias can be explained by the well known hydrostatic equilibrium assumption in Planck masses, and the different parameters in the Y500-M500 scaling laws. This work highlights that CNNs, supported by hydrodynamic simulations, are a promising and independent tool for estimating cluster masses with high accuracy, which can be extended to other surveys as well as to observations in other bands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源