论文标题

多用户MIMO系统的深度学习:飞行员的联合设计,有限的反馈和预编码

Deep Learning for Multi-User MIMO Systems: Joint Design of Pilot, Limited Feedback, and Precoding

论文作者

Jang, Jeonghyeon, Lee, Hoon, Kim, Il-Min, Lee, Inkyu

论文摘要

在传统的多用户多输入多输出(MU-MIMO)系统中,尽管高度耦合,但已单独设计了频划分双工(FDD)(FDD)的系统。本文研究了下行链路MU-MIMO系统的端到端设计,其中包括试点序列,有限的反馈和预编码。为了解决这个问题,我们提出了一个新颖的深度学习框架(DL)框架,该框架共同优化了用户的反馈信息生成和基础站(BS)的预编码器设计。 MU-MIMO系统中的每个过程都被智能设计的多个深神经网络(DNN)单元所取代。在BS,神经网络会生成试验序列,并帮助用户获得准确的频道状态信息。在每个用户中,频道反馈操作是由单个用户DNN以分布方式进行的。然后,另一个BS DNN从用户那里收集反馈信息,并确定MIMO预编码矩阵。提出了联合培训算法以端到端的方式优化所有DNN单元。此外,还提出了一种可以避免针对不同网络大小的可扩展设计的培训策略。数值结果证明了与经典优化技术和其他常规DNN方案相比,提出的DL框架的有效性。

In conventional multi-user multiple-input multiple-output (MU-MIMO) systems with frequency division duplexing (FDD), channel acquisition and precoder optimization processes have been designed separately although they are highly coupled. This paper studies an end-to-end design of downlink MU-MIMO systems which include pilot sequences, limited feedback, and precoding. To address this problem, we propose a novel deep learning (DL) framework which jointly optimizes the feedback information generation at users and the precoder design at a base station (BS). Each procedure in the MU-MIMO systems is replaced by intelligently designed multiple deep neural networks (DNN) units. At the BS, a neural network generates pilot sequences and helps the users obtain accurate channel state information. At each user, the channel feedback operation is carried out in a distributed manner by an individual user DNN. Then, another BS DNN collects feedback information from the users and determines the MIMO precoding matrices. A joint training algorithm is proposed to optimize all DNN units in an end-to-end manner. In addition, a training strategy which can avoid retraining for different network sizes for a scalable design is proposed. Numerical results demonstrate the effectiveness of the proposed DL framework compared to classical optimization techniques and other conventional DNN schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源