论文标题
使用专利集群的网络动态来识别新兴技术和领先的公司:网络安全案例研究
Identifying Emerging Technologies and Leading Companies using Network Dynamics of Patent Clusters: a Cybersecurity Case Study
论文作者
论文摘要
战略决策在很大程度上依赖非科学仪器来预测新兴技术和领先的公司。取而代之的是,我们使用适用于任何行业的通用方法来构建一个快速定量系统,以少量的计算足迹来发现给定领域中最重要的技术和公司。借助来自美国专利和商标办公室的专利数据,我们首先通过自动化的机器学习工具为每个专利分配一个价值。然后,我们应用网络科学来跟踪公司和专利集群(即技术)的交互和演变,以创建两组的排名,这要归功于五个网络中心性指数,以突出显示重要或新兴网络节点。最后,我们通过基于网络安全行业的案例研究来说明我们的系统。我们的结果产生了有用的见解,例如,强调(i)新兴技术的平均专利价值和集群规模越来越大,(ii)该领域最有影响力的公司以及(iii)具有很少但有影响力的专利的有吸引力的初创公司。互补分析还提供了减少网络安全行业大型公司的边际研究和发展回报的证据。
Strategic decisions rely heavily on non-scientific instrumentation to forecast emerging technologies and leading companies. Instead, we build a fast quantitative system with a small computational footprint to discover the most important technologies and companies in a given field, using generalisable methods applicable to any industry. With the help of patent data from the US Patent and Trademark Office, we first assign a value to each patent thanks to automated machine learning tools. We then apply network science to track the interaction and evolution of companies and clusters of patents (i.e. technologies) to create rankings for both sets that highlight important or emerging network nodes thanks to five network centrality indices. Finally, we illustrate our system with a case study based on the cybersecurity industry. Our results produce useful insights, for instance by highlighting (i) emerging technologies with a growing mean patent value and cluster size, (ii) the most influential companies in the field and (iii) attractive startups with few but impactful patents. Complementary analysis also provides evidence of decreasing marginal returns of research and development in larger companies in the cybersecurity industry.