论文标题

公平重新编程

Fairness Reprogramming

论文作者

Zhang, Guanhua, Zhang, Yihua, Zhang, Yang, Fan, Wenqi, Li, Qing, Liu, Sijia, Chang, Shiyu

论文摘要

尽管促进机器学习(ML)公平的最新进展激增,但现有的主流方法主要需要重新训练或对神经网络的整个权重以满足公平标准。但是,由于较大的计算和存储成本,低数据效率和模型隐私问题,对于那些大规模训练的模型来说,这通常是不可行的。在本文中,我们提出了一种新的通用学习范式,称为FairreProgragr,该范式结合了模型重编程技术。具体而言,Fairreprogram认为无法更改模型并将输入的一组扰动(称为公平触发器)附加到一个情况下,该情况被调整为Min-Max公式下的公平标准。我们进一步介绍了一个信息理论框架,该框架解释了为什么以及在什么条件下,使用公平触发器可以实现公平目标。我们从理论上和经验上都表明,公平触发器可以通过提供错误的人口统计信息来有效地掩盖固定ML模型的输出预测中的人口偏见,从而阻碍模型利用正确的人口统计信息来进行预测。在NLP和CV数据集上进行的广泛实验表明,在两个广泛使用的公平标准下,数据依赖性要少得多,我们的方法可以实现更好的公平性改进。代码可在https://github.com/ucsb-nlp-chang/fairness-reprogramming.git上找到。

Despite a surge of recent advances in promoting machine Learning (ML) fairness, the existing mainstream approaches mostly require retraining or finetuning the entire weights of the neural network to meet the fairness criteria. However, this is often infeasible in practice for those large-scale trained models due to large computational and storage costs, low data efficiency, and model privacy issues. In this paper, we propose a new generic fairness learning paradigm, called FairReprogram, which incorporates the model reprogramming technique. Specifically, FairReprogram considers the case where models can not be changed and appends to the input a set of perturbations, called the fairness trigger, which is tuned towards the fairness criteria under a min-max formulation. We further introduce an information-theoretic framework that explains why and under what conditions fairness goals can be achieved using the fairness trigger. We show both theoretically and empirically that the fairness trigger can effectively obscure demographic biases in the output prediction of fixed ML models by providing false demographic information that hinders the model from utilizing the correct demographic information to make the prediction. Extensive experiments on both NLP and CV datasets demonstrate that our method can achieve better fairness improvements than retraining-based methods with far less data dependency under two widely-used fairness criteria. Codes are available at https://github.com/UCSB-NLP-Chang/Fairness-Reprogramming.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源