论文标题

基于控制的延续松弛振荡的数值方法

Numerical methods for control-based continuation of relaxation oscillations

论文作者

Blyth, Mark, Tsaneva-Atanasova, Krasimira, Marucci, Lucia, Renson, Ludovic

论文摘要

基于控制的延续(CBC)是一种实验方法,可以揭示物理系统的稳定且不稳定的动力学。它将数值延续的路径遵循原理扩展到实验,并提供系统的动力学分析而无需数学建模。 CBC在研究机械系统的分叉结构方面取得了巨大的成功。然而,该方法在研究放松振荡方面是不切实际的。需要大量的傅立叶模式来描述它们,并且当使用许多傅立叶模式时,实验的长度显着增加,因为必须运行系统以多次收敛。此外,放松振荡通常在自主系统中出现,为此需要适当的阶段约束。为了克服这些挑战,我们引入了自适应B-Spline离散化,可以产生对响应的简约描述,这些响应原本需要许多傅立叶模式。我们将其与新的相结合结合在一起,该相位锁控制目标和溶液阶段。结果在慢速合成基因网络和俄勒冈州模型的模拟中证明了结果。我们的方法将CBC扩展到到目前为止所研究的系统范围要大得多,从而为慢速系统开放了一系列新型的实验机会。

Control-based continuation (CBC) is an experimental method that can reveal stable and unstable dynamics of physical systems. It extends the path-following principles of numerical continuation to experiments, and provides systematic dynamical analyses without the need for mathematical modelling. CBC has seen considerable success in studying the bifurcation structure of mechanical systems. Nevertheless, the method is not practical for studying relaxation oscillations. Large numbers of Fourier modes are required to describe them, and the length of the experiment significantly increases when many Fourier modes are used, as the system must be run to convergence many times. Furthermore, relaxation oscillations often arise in autonomous systems, for which an appropriate phase constraint is required. To overcome these challenges, we introduce an adaptive B-spline discretisation, that can produce a parsimonious description of responses that would otherwise require many Fourier modes. We couple this to a novel phase constraint, that phase-locks control target and solution phase. Results are demonstrated on simulations of a slow-fast synthetic gene network and an Oregonator model. Our methods extend CBC to a much broader range of systems than have been studied so far, opening up a range of novel experimental opportunities on slow-fast systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源