论文标题
无限量子信号处理
Infinite quantum signal processing
论文作者
论文摘要
量子信号处理(QSP)代表使用$ 2 $ $ 2 \ $ 2 \ times 2 $的产物,由$(d+1)$实数称为相位因子的实际标量$ d $的真实标量多项式。多项式的这种创新表示在量子计算中具有广泛的应用。当通过截断无限多项式序列来获得感兴趣的多项式时,一个自然的问题是,相位因子是否具有明确定义的限制为$ d \ to \ to \ infty $。尽管相位因子通常不是唯一的,但我们发现存在一致的参数化选择,因此限制在$ \ ell^1 $空间中得到了很好的定义。 QSP的这种概括(称为无限量子信号处理)可用于表示大量的非物质函数。我们的分析揭示了目标函数的规律性与相位因素的衰减特性之间存在令人惊讶的联系。我们的分析还激发了一种非常简单有效的算法,以大约计算$ \ ell^1 $空间中的相位因子。该算法仅使用双精度算术操作,当目标功能的chebyshev系数的$ \ ell^1 $ norm norm被证明会收敛。这也是第一个在数字上稳定的算法,用于在限制$ d \ to \ iftty $中找到具有可证明性能保证的相位因子。
Quantum signal processing (QSP) represents a real scalar polynomial of degree $d$ using a product of unitary matrices of size $2\times 2$, parameterized by $(d+1)$ real numbers called the phase factors. This innovative representation of polynomials has a wide range of applications in quantum computation. When the polynomial of interest is obtained by truncating an infinite polynomial series, a natural question is whether the phase factors have a well defined limit as the degree $d\to \infty$. While the phase factors are generally not unique, we find that there exists a consistent choice of parameterization so that the limit is well defined in the $\ell^1$ space. This generalization of QSP, called the infinite quantum signal processing, can be used to represent a large class of non-polynomial functions. Our analysis reveals a surprising connection between the regularity of the target function and the decay properties of the phase factors. Our analysis also inspires a very simple and efficient algorithm to approximately compute the phase factors in the $\ell^1$ space. The algorithm uses only double precision arithmetic operations, and provably converges when the $\ell^1$ norm of the Chebyshev coefficients of the target function is upper bounded by a constant that is independent of $d$. This is also the first numerically stable algorithm for finding phase factors with provable performance guarantees in the limit $d\to \infty$.