论文标题

RNGDET ++:通过实例分段和多尺度功能增强功能的变压器的道路网络图检测

RNGDet++: Road Network Graph Detection by Transformer with Instance Segmentation and Multi-scale Features Enhancement

论文作者

Xu, Zhenhua, Liu, Yuxuan, Sun, Yuxiang, Liu, Ming, Wang, Lujia

论文摘要

道路网络图是自动驾驶中下游任务的关键组件,例如全球路线计划和导航。在过去的几年中,人工专家通常会注释道路网络图,这是耗时且劳动力密集的。为了有效,有效地注释道路网络图,需要自动算法进行道路网络图检测。大多数现有方法要么在语义分割图上采用后处理步骤来产生路网络图,要么提出基于图的算法以直接预测图形。但是,这些作品具有硬编码算法和性能较低。为了增强先前的最新方法(SOTA)方法RNGDET,我们添加了一个实例细分头,以更好地监督培训,并使网络能够利用骨干的多尺度功能。由于新提出的方法从RNGDET改进了,因此我们将其命名为rngdet ++。实验结果表明,我们的RNGDET ++在两个大规模公共数据集上的几乎所有评估指标方面都优于基线方法。我们的代码和补充材料可在\ url {https://tonyxuqaq.github.io/projects/rngdetplusplus/}中获得。

The road network graph is a critical component for downstream tasks in autonomous driving, such as global route planning and navigation. In the past years, road network graphs are usually annotated by human experts manually, which is time-consuming and labor-intensive. To annotate road network graphs effectively and efficiently, automatic algorithms for road network graph detection are demanded. Most existing methods either adopt a post-processing step on semantic segmentation maps to produce road network graphs, or propose graph-based algorithms to directly predict the graphs. However, these works suffer from hard-coded algorithms and inferior performance. To enhance the previous state-of-the-art (SOTA) method RNGDet, we add an instance segmentation head to better supervise the training, and enable the network to leverage multi-scale features of the backbone. Since the new proposed approach is improved from RNGDet, we name it RNGDet++. Experimental results show that our RNGDet++ outperforms baseline methods in terms of almost all evaluation metrics on two large-scale public datasets. Our code and supplementary materials are available at \url{https://tonyxuqaq.github.io/projects/RNGDetPlusPlus/}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源