论文标题

Borel的Artin $ L $ functions的排名定理

Borel's rank theorem for Artin $L$-functions

论文作者

Zhang, Ningchuan

论文摘要

Borel的排名定理标识了数字字段整数环的代数$ k $ - 组的等级,并在该字段上附加了Dedekind Zeta函数的命令。在GROSS的工作之后,我们通过考虑具有等效的代数$ K $ - 数字字段的等效代数$ k $ groups,为具有理性galois表示的系数建立了该定理的版本。该结构涉及与理性摩尔光谱的代数$ k $ - 理论光谱。我们进一步讨论了与Galois表示相关的整体摩尔光谱及其在$ l $ functions中的潜在应用。

Borel's rank theorem identifies the ranks of algebraic $K$-groups of the ring of integers of a number field with the orders of vanishing of the Dedekind zeta function attached to the field. Following the work of Gross, we establish a version of this theorem for Artin $L$-functions by considering equivariant algebraic $K$-groups of number fields with coefficients in rational Galois representations. This construction involves twisting algebraic $K$-theory spectra with rational equivariant Moore spectra. We further discuss integral equivariant Moore spectra attached to Galois representations and their potential applications in $L$-functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源