论文标题

重新访问热电载体折射噪声,用于重力波干涉仪的半导体光学元件

Revisiting Thermal Charge Carrier Refractive Noise in Semiconductor Optics for Gravitational-Wave Interferometers

论文作者

Siegel, Harrison, Levin, Yuri

论文摘要

下一代重力波干涉仪中的测试量可能具有半导体底物,很可能是硅。半导体内电荷载体的随机运动将在材料的折射索引中随机波动,引入了称为热荷载载体折射率(TCCR)噪声的噪声源。 Bruns等人先前使用Langevin Force方法研究了TCCR噪声。在这里,我们通过使用波动 - 散至定理(FDT)来计算TCCR噪声的功率光谱密度,并考虑到先前被忽略的激光光的效果,这是通过其高反射涂层在输入测试质量内产生的。我们使用来自爱因斯坦望远镜的参数来量化结果,并表明,在10 K的温度下,TCCR噪声的幅度高达$ \ sqrt {2} $ $ \ sqrt {2} $倍,比以前所声称的倍数比以前的77 k到300 k的幅度低于以前的幅度降低5到7次的范围。包括。尽管存在这些差异,但我们仍然像Bruns等人一样得出结论。对于下一代重力波干涉仪,TCCR噪声不应是限制噪声源。

The test masses in next-generation gravitational-wave interferometers may have a semiconductor substrate, most likely silicon. The stochastic motion of charge carriers within the semiconductor will cause random fluctuations in the material's index of refraction, introducing a noise source called Thermal Charge Carrier Refractive (TCCR) noise. TCCR noise was previously studied in 2020 by Bruns et al., using a Langevin force approach. Here we compute the power spectral density of TCCR noise by both using the Fluctuation-Dissipation theorem (FDT) and accounting for previously neglected effects of the standing wave of laser light which is produced inside the input test mass by its high-reflecting coatings. We quantify our results with parameters from Einstein Telescope, and show that at temperatures of 10 K the amplitude of TCCR noise is up to a factor of $\sqrt{2}$ times greater than what was previously claimed, and from 77 K to 300 K the amplitude is around 5 to 7 orders of magnitude lower than previously claimed when we choose to neglect the standing wave, and is up to a factor of 6 times lower if the standing wave is included. Despite these differences, we still conclude like Bruns et al. that TCCR noise should not be a limiting noise source for next-generation gravitational-wave interferometers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源