论文标题

三角网络中的部分自我测试和随机认证

Partial self-testing and randomness certification in the triangle network

论文作者

Sekatski, Pavel, Boreiri, Sadra, Brunner, Nicolas

论文摘要

可以在具有独立源的网络中没有输入(即每个方使用固定测量设置)的输入(即每个方)的量子非局部性。在这里,我们考虑对环网络的影响,并表明可以从观察到的相关性中部分表征或进行自我测试。将这些结果应用于三角网络,使我们能够证明Renou等人的非局部分布。 [物理。莱特牧师。 123,140401(2019)]要求(i)(i)所有来源产生的纠缠量最少,(ii)所有局部测量都纠缠在一起,并且(iii)每个局部结果都具有最小的熵。因此,我们表明,三角网络允许真正的网络量子非局部性和可认证的随机性。

Quantum nonlocality can be demonstrated without inputs (i.e. each party using a fixed measurement setting) in a network with independent sources. Here we consider this effect on ring networks, and show that the underlying quantum strategy can be partially characterized, or self-tested, from observed correlations. Applying these results to the triangle network allows us to show that the nonlocal distribution of Renou et al. [Phys. Rev. Lett. 123, 140401 (2019)] requires that (i) all sources produce a minimal amount of entanglement, (ii) all local measurements are entangled, and (iii) each local outcome features a minimal entropy. Hence we show that the triangle network allows for genuine network quantum nonlocality and certifiable randomness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源