论文标题
修改的MacDonald多项式和多种选择零范围过程:II
Modified Macdonald polynomials and the multispecies zero range process: II
论文作者
论文摘要
在这项工作的前一部分中,我们为修改的MacDonald多项式$ \ widetilde {h}_λ(x; q,t)$提供了新的Tableau公式。在本文中,我们明确描述了这些组合对象与一类多彼此之间的连接,完全不对称的零范围过程(MTAZRP)在一个环上具有与位点相关的跳跃率。我们在给定形状的tableaux空间上构建了一个马尔可夫链,该链会投射到mtazrp,其固定分布可以用Quinv加权的tableaux表示。我们推断出MTAZRP具有由修改的MacDonald多项式$ \ widetilde {h}_λ(x; 1,t)$给出的分区函数。与以前的工作相比,在这里的新颖性将集成系统与对称函数相关的固定分布是,变量$ x_1,\ ldots,x_n $明确地显示为MTAZRP中的跳价速率。我们还获得了在站点之间的跳跃率置换率下的MTAZRP概率的有趣对称性。最后,我们探讨了MTAZRP的许多有趣的特殊情况,并为粒子密度和该过程的相关性提供明确的公式,纯粹是根据修改的MacDonald多项式。
In a previous part of this work, we gave a new tableau formula for the modified Macdonald polynomials $\widetilde{H}_λ(X;q,t)$, using a weight on tableaux involving the \emph{queue inversion} (quinv) statistic. In this paper we explicitly describe a connection between these combinatorial objects and a class of multispecies totally asymmetric zero range processes (mTAZRP) on a ring, with site-dependent jump-rates. We construct a Markov chain on the space of tableaux of a given shape, which projects to the mTAZRP, and whose stationary distribution can be expressed in terms of quinv-weighted tableaux. We deduce that the mTAZRP has a partition function given by the modified Macdonald polynomial $\widetilde{H}_λ(X;1,t)$. The novelty here in comparison to previous works relating the stationary distribution of integrable systems to symmetric functions is that the variables $x_1,\ldots,x_n$ are explicitly present as hopping rates in the mTAZRP. We also obtain interesting symmetry properties of the mTAZRP probabilities under permutation of the jump-rates between the sites. Finally, we explore a number of interesting special cases of the mTAZRP, and give explicit formulas for particle densities and correlations of the process purely in terms of modified Macdonald polynomials.