论文标题

修改的MacDonald多项式和多种选择零范围过程:II

Modified Macdonald polynomials and the multispecies zero range process: II

论文作者

Ayyer, Arvind, Mandelshtam, Olya, Martin, James B.

论文摘要

在这项工作的前一部分中,我们为修改的MacDonald多项式$ \ widetilde {h}_λ(x; q,t)$提供了新的Tableau公式。在本文中,我们明确描述了这些组合对象与一类多彼此之间的连接,完全不对称的零范围过程(MTAZRP)在一个环上具有与位点相关的跳跃率。我们在给定形状的tableaux空间上构建了一个马尔可夫链,该链会投射到mtazrp,其固定分布可以用Quinv加权的tableaux表示。我们推断出MTAZRP具有由修改的MacDonald多项式$ \ widetilde {h}_λ(x; 1,t)$给出的分区函数。与以前的工作相比,在这里的新颖性将集成系统与对称函数相关的固定分布是,变量$ x_1,\ ldots,x_n $明确地显示为MTAZRP中的跳价速率。我们还获得了在站点之间的跳跃率置换率下的MTAZRP概率的有趣对称性。最后,我们探讨了MTAZRP的许多有趣的特殊情况,并为粒子密度和该过程的相关性提供明确的公式,纯粹是根据修改的MacDonald多项式。

In a previous part of this work, we gave a new tableau formula for the modified Macdonald polynomials $\widetilde{H}_λ(X;q,t)$, using a weight on tableaux involving the \emph{queue inversion} (quinv) statistic. In this paper we explicitly describe a connection between these combinatorial objects and a class of multispecies totally asymmetric zero range processes (mTAZRP) on a ring, with site-dependent jump-rates. We construct a Markov chain on the space of tableaux of a given shape, which projects to the mTAZRP, and whose stationary distribution can be expressed in terms of quinv-weighted tableaux. We deduce that the mTAZRP has a partition function given by the modified Macdonald polynomial $\widetilde{H}_λ(X;1,t)$. The novelty here in comparison to previous works relating the stationary distribution of integrable systems to symmetric functions is that the variables $x_1,\ldots,x_n$ are explicitly present as hopping rates in the mTAZRP. We also obtain interesting symmetry properties of the mTAZRP probabilities under permutation of the jump-rates between the sites. Finally, we explore a number of interesting special cases of the mTAZRP, and give explicit formulas for particle densities and correlations of the process purely in terms of modified Macdonald polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源