论文标题
Crowell-Murasugi定理的简单证明
A simple proof of the Crowell-Murasugi theorem
论文作者
论文摘要
我们为定理提供了基础,独立的证明,并于1958 - 9年独立于Crowell和Murasugi证明,交替结的属等于其Alexander多项式的宽度一半,并将Seifert算法应用于任何交替的结节图,给出了最小属属的表面。
We give an elementary, self-contained proof of the theorem, proven independently in 1958-9 by Crowell and Murasugi, that the genus of an alternating knot equals half the breadth of its Alexander polynomial, and that applying Seifert's algorithm to any alternating knot diagram gives a surface of minimal genus.