论文标题

FedToken:用于联合学习的数据贡献的令牌化激励措施

FedToken: Tokenized Incentives for Data Contribution in Federated Learning

论文作者

Pandey, Shashi Raj, Nguyen, Lam Duc, Popovski, Petar

论文摘要

弥补联邦学习(FL)模型的分散培训中所涉及的成本的激励措施是客户长期参与的关键刺激。但是,由于缺乏以下信息,要说服客户在FL中进行质量参与是一项挑战:(i)有关客户数据质量和属性的完整信息; (ii)客户数据贡献的价值; (iii)货币奖励优惠的信任机制。这通常会导致培训和沟通效率较差。尽管几项工作着重于战略激励设计和客户选择以克服这个问题,但就针对可预见的数字经济(包括Web 3.0)量身定制的总体设计存在一个重大的知识差距,同时同时实现了学习目标。为了解决这一差距,我们提出了一个基于贡献的令牌化激励方案,即\ texttt {fedToken},并得到区块链技术的支持,可确保对与模型培训期间数据估值相对应的代币的公平分配。利用工程设计的基于沙普利的计划,我们首先近似模型聚合过程中本地模型的贡献,然后以战略性安排客户降低沟通循环的融合和锚定方式,以分配\ emph {负担得起的}代币在受限的货币预算下。广泛的模拟证明了我们提出的方法的功效。

Incentives that compensate for the involved costs in the decentralized training of a Federated Learning (FL) model act as a key stimulus for clients' long-term participation. However, it is challenging to convince clients for quality participation in FL due to the absence of: (i) full information on the client's data quality and properties; (ii) the value of client's data contributions; and (iii) the trusted mechanism for monetary incentive offers. This often leads to poor efficiency in training and communication. While several works focus on strategic incentive designs and client selection to overcome this problem, there is a major knowledge gap in terms of an overall design tailored to the foreseen digital economy, including Web 3.0, while simultaneously meeting the learning objectives. To address this gap, we propose a contribution-based tokenized incentive scheme, namely \texttt{FedToken}, backed by blockchain technology that ensures fair allocation of tokens amongst the clients that corresponds to the valuation of their data during model training. Leveraging the engineered Shapley-based scheme, we first approximate the contribution of local models during model aggregation, then strategically schedule clients lowering the communication rounds for convergence and anchor ways to allocate \emph{affordable} tokens under a constrained monetary budget. Extensive simulations demonstrate the efficacy of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源