论文标题

使用机器学习方法在WLAN下行链路MU-MIMO频道中优化框架尺寸

Frame Size Optimization Using a Machine Learning Approach in WLAN Downlink MU-MIMO Channel

论文作者

Kassa, Lemlem, Deng, Jianhua, Davis, Mark, Cai, Jingye

论文摘要

IEEE 802.11ac/n引入了框架聚合技术,以适应不断增长的交通需求并提高传输效率和渠道利用率的性能。这是通过允许每个传输汇总的许多数据包来实现的,这实现了WLAN吞吐量性能的显着增强。但是,由于电台的传输需求和数据传输速率异质,因此很难在下行链路MIMO通道中有效利用框架聚集的好处。因此,将发生浪费的太空渠道时间,从而降低传输效率。在解决这些挑战时,现有研究提出了不同的方法。但是,这些方法中的大多数都不考虑基于机器学习的优化解决方案。本文的主要贡献是提出一种基于机器学习的框架尺寸优化解决方案,以最大化WLAN在下行链路MU-MIMO通道中的系统吞吐量。在这种方法中,接入点(AP)执行最大系统吞吐量测量和收集的框架尺寸吞吐量模式,这些模式包含有关交通模式,通道条件和电台数量(STA)的影响的知识。基于这些模式,我们的方法使用神经网络将系统吞吐量正确建模为系统框架大小的函数。训练神经网络后,我们获得梯度信息以调整框架尺寸。在VoIP和视频应用,渠道条件和站点数量的效果下,在FIFO聚合算法上评估了所提出的机器学习(ML)方法的性能(ML)方法。

The IEEE 802.11ac/n introduced frame aggregation technology to accommodate the growing traffic demand and increase the performance of transmission efficiency and channel utilization. This is achieved by allowing many packets to be aggregated per transmission which realized a significant enhancement in the throughput performance of WLAN. However, it is difficult to efficiently utilize the benefits of frame aggregation in the downlink MU-MIMO channels as stations have heterogeneous transmission demands and data transmission rates. As a result of this, wasted space channel time will occur which degrades transmission efficiency. In addressing these challenges, the existing studies have proposed different approaches. However, most of these approaches did not consider a machine-Learning based optimization solution. The main contribution of this paper is to propose a machine-learning-based frame size optimization solution to maximize the system throughput of WLAN in the downlink MU-MIMO channel. In this approach, the Access Point (AP) performs the maximum system throughput measurement and collected frame size-system throughput patterns which contain knowledge about the effects of traffic patterns, channel conditions, and number of stations(STAs). Based on these patterns,our approach uses a neural network to correctly model the system throughput as a function of the system frame size. After training the neural network, we obtain the gradient information to adjust the frame size. the performance of the proposed Machine learning(ML) approach is evaluated over the FIFO aggregation algorithm under the effects of heterogenous traffic patterns for VoIP and video applications, channel conditions, and number of stations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源