论文标题

在基于深度学习的医学细分中校准合奏,以进行可扩展的不确定性量化

Calibrating Ensembles for Scalable Uncertainty Quantification in Deep Learning-based Medical Segmentation

论文作者

Buddenkotte, Thomas, Sanchez, Lorena Escudero, Crispin-Ortuzar, Mireia, Woitek, Ramona, McCague, Cathal, Brenton, James D., Öktem, Ozan, Sala, Evis, Rundo, Leonardo

论文摘要

自动图像分析中的不确定性定量在许多应用中是高度期望的。通常,分类或细分中的机器学习模型仅用于提供二进制答案。但是,量化模型的不确定性可能在主动学习或机器人类互动中起关键作用。当使用基于深度学习的模型,这是许多成像应用中的最新技术时,不确定性量化尤其困难。在高维实际问题中,当前的不确定性量化方法不能很好地扩展。可扩展的解决方案通常依赖于具有不同随机种子的相同模型的推理或训练集合过程中的经典技术,以获得后验分布。在本文中,我们表明这些方法无法近似分类概率。相反,我们提出了一个可扩展和直观的框架来校准深度学习模型的合奏,以产生近似分类概率的不确定性定量测量值。在看不见的测试数据上,我们证明了与标准方法进行比较时的校准,灵敏度(三种情况中的两种)以及精度。我们进一步激发了我们在积极学习中使用方法的用法,创建了伪标签,以从未标记的图像和人机合作中学习。

Uncertainty quantification in automated image analysis is highly desired in many applications. Typically, machine learning models in classification or segmentation are only developed to provide binary answers; however, quantifying the uncertainty of the models can play a critical role for example in active learning or machine human interaction. Uncertainty quantification is especially difficult when using deep learning-based models, which are the state-of-the-art in many imaging applications. The current uncertainty quantification approaches do not scale well in high-dimensional real-world problems. Scalable solutions often rely on classical techniques, such as dropout, during inference or training ensembles of identical models with different random seeds to obtain a posterior distribution. In this paper, we show that these approaches fail to approximate the classification probability. On the contrary, we propose a scalable and intuitive framework to calibrate ensembles of deep learning models to produce uncertainty quantification measurements that approximate the classification probability. On unseen test data, we demonstrate improved calibration, sensitivity (in two out of three cases) and precision when being compared with the standard approaches. We further motivate the usage of our method in active learning, creating pseudo-labels to learn from unlabeled images and human-machine collaboration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源