论文标题
关于单位磁盘的全体形态自图的速度的单调性
On the monotonicity of the speeds for semigroups of holomorphic self-maps of the unit disk
论文作者
论文摘要
我们研究了单位磁盘的holomorphic自图的半群$(ϕ_t)_ {t \ geq 0} $,边界上带有Denjoy-Wolff点。我们表明,这种半群的正交速度严格增加了功能。这回答了F. Bracci,D。Cordella和M. Kouro所提出的一个问题,并暗示了Bracci猜想的正交速度的域单调性属性。我们举例说明了一个半群,以至于其总速度最终并没有增加。我们还提供了另一个例子,表明半群具有特定渐近行为的总速度,从而回答了另一个BRACCI问题。
We study semigroups $(ϕ_t)_{t\geq 0}$ of holomorphic self-maps of the unit disk with Denjoy-Wolff point on the boundary. We show that the orthogonal speed of such semigroups is a strictly increasing function. This answers a question raised by F. Bracci, D. Cordella, and M. Kourou, and implies a domain monotonicity property for orthogonal speeds conjectured by Bracci. We give an example of a semigroup such that its total speed is not eventually increasing. We also provide another example of a semigroup having total speed of a certain asymptotic behavior, thus answering another question of Bracci.