论文标题

设计和实施分散的云,用于评估分布式数据库

Design and Implementation of Fragmented Clouds for Evaluation of Distributed Databases

论文作者

Mansouri, Yaser, Ullah, Faheem, Dhingra, Shagun, Babar, M. Ali

论文摘要

在本文中,我们提出了一个碎片的混合云(FHC),该云提供了多个地理分布的私有云数据中心的统一视图。 FHC利用了一个零散的用法模型,其中外包在可以由静态和移动实体托管的私有云中双向。私有云节点的移动性方面对延迟和网络吞吐量的影响对FHC的性能有重要影响,这些延迟和网络吞吐量与不同节点之间的时变距离相反。移动性还导致FHC基础架构的计算节点和网络链接之间的间歇性中断。为了完全考虑移动性及其后果,我们实施了一个分层的FHC,该FHC利用Linux实用程序和Bash-Shell编程。我们还评估了节点的移动性对分布式数据库性能的影响,这是由于时间变化的延迟和带宽,缩小尺寸和升级群集节点以及网络可访问性的影响。我们广泛的实验中的发现为众所周知的大数据数据库的性能提供了深刻的见解,例如Cassandra,Mongodb,Redis和MySQL,当部署在FHC上时。

In this paper, we present a Fragmented Hybrid Cloud (FHC) that provides a unified view of multiple geographically distributed private cloud datacenters. FHC leverages a fragmented usage model in which outsourcing is bi-directional across private clouds that can be hosted by static and mobile entities. The mobility aspect of private cloud nodes has important impact on the FHC performance in terms of latency and network throughput that are reversely proportional to time-varying distances among different nodes. Mobility also results in intermittent interruption among computing nodes and network links of FHC infrastructure. To fully consider mobility and its consequences, we implemented a layered FHC that leverages Linux utilities and bash-shell programming. We also evaluated the impact of the mobility of nodes on the performance of distributed databases as a result of time-varying latency and bandwidth, downsizing and upsizing cluster nodes, and network accessibility. The findings from our extensive experiments provide deep insights into the performance of well-known big data databases, such as Cassandra, MongoDB, Redis, and MySQL, when deployed on a FHC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源