论文标题
高级渐近保护和经典的半密度RK RK方案,用于欧拉 - 波森系统中的欧拉峰系统
High Order Asymptotic Preserving and Classical Semi-implicit RK Schemes for the Euler-Poisson System in the Quasineutral Limit
论文作者
论文摘要
在本文中,介绍了在准界限极限中的高阶准确IMEX有限体积方案(EP)方程的设计和分析。由于用于管理方程式的准二极管极限是单数的,因此时间离散化是实现准确的数值方法的差异。为此,通过线方法将EP系统视为差分代数方程系统(DAE)。由于这个有利的位置,通过采用用于隐式DAE的直接方法的新型组合来实现高阶线性半明上(SI)时间离散化,以及两种不同类别的IMEX-RK方案:添加剂和乘法。对于两种时间离散策略,为了说明准化机制中快速的等离子体振荡,非线性欧拉通量被分为刚性和非STIFT组件的两种不同组合。添加剂方法产生的高阶方案被指定为经典方案,而乘法方法生成的方案具有渐近保存(AP)属性。经典和AP方案的时间离散分别由标准的IMEX-RK和Si-imex-RK方法执行,以便隐含地对刚性术语进行隐式处理,并明确处理非Stift。为了在空间中离散,将rusanov型中央通量用于非Stift部分,而刚性部分的简单中心差异。还为使用乘法方法获得的时空完全消失方案建立了AP属性。提出了数值实验的结果,这些结果证实了基于SI-EMEX-RK时间离散化的高阶方案可相对于Debye长度统一的二阶收敛,并且在准中性极限处为AP。
In this paper, the design and analysis of high order accurate IMEX finite volume schemes for the compressible Euler-Poisson (EP) equations in the quasineutral limit is presented. As the quasineutral limit is singular for the governing equations, the time discretisation is tantamount to achieving an accurate numerical method. To this end, the EP system is viewed as a differential algebraic equation system (DAEs) via the method of lines. As a consequence of this vantage point, high order linearly semi-implicit (SI) time discretisation are realised by employing a novel combination of the direct approach used for implicit discretisation of DAEs and, two different classes of IMEX-RK schemes: the additive and the multiplicative. For both the time discretisation strategies, in order to account for rapid plasma oscillations in quasineutral regimes, the nonlinear Euler fluxes are split into two different combinations of stiff and non-stiff components. The high order scheme resulting from the additive approach is designated as a classical scheme while the one generated by the multiplicative approach possesses the asymptotic preserving (AP) property. Time discretisations for the classical and the AP schemes are performed by standard IMEX-RK and SI-IMEX-RK methods, respectively so that the stiff terms are treated implicitly and the non-stiff ones explicitly. In order to discretise in space a Rusanov-type central flux is used for the non-stiff part, and simple central differencing for the stiff part. AP property is also established for the space-time fully-discrete scheme obtained using the multiplicative approach. Results of numerical experiments are presented, which confirm that the high order schemes based on the SI-IMEX-RK time discretisation achieve uniform second order convergence with respect to the Debye length and are AP in the quasineutral limit.