论文标题
使用磁性拓扑绝缘子的低温内存计算
Cryogenic in-memory computing using magnetic topological insulators
论文作者
论文摘要
机器学习算法已被证明可用于基本量子计算任务,例如量子误差校正和量子控制。这些算法在低温温度下的有效硬件实施至关重要。在这里,我们利用磁性拓扑绝缘子作为回忆录(称为磁性拓扑回忆录),并根据手性边缘状态和拓扑表面状态的共存引入低温内存计算方案。巨大异常效果的回忆转换和阅读表现出高能量效率,较高的稳定性和较低的随机性。我们在使用四个磁性拓扑回忆录的概念验证分类任务中实现了很高的精度。此外,与现有的磁性回忆器和CMOS技术相比,我们的大规模神经网络的算法级别和电路级模拟表明了软件级的精度和较低的能量消耗。我们的结果不仅展示了手性边缘状态的新应用,而且还可能激发了进一步的基于拓扑量子物理学的新型计算方案。
Machine learning algorithms have been proven effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here, we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of the chiral edge state and the topological surface state. The memristive switching and reading of the giant anomalous Hall effect exhibit high energy efficiency, high stability, and low stochasticity. We achieve high accuracy in a proof-of-concept classification task using four magnetic topological memristors. Furthermore, our algorithm-level and circuit-level simulations of large-scale neural networks demonstrate software-level accuracy and lower energy consumption for image recognition and quantum state preparation compared with existing magnetic memristor and CMOS technologies. Our results not only showcase a new application of chiral edge states but also may inspire further topological quantum physics-based novel computing schemes.