论文标题

在物联网网络中,基于学习的多个无人机的AOI最小化轨迹计划

A Learning-Based Trajectory Planning of Multiple UAVs for AoI Minimization in IoT Networks

论文作者

Eldeeb, Eslam, Pérez, Dian Echevarría, Sant'Ana, Jean Michel de Souza, Shehab, Mohammad, Mahmood, Nurul Huda, Alves, Hirley, Latva-aho, Matti

论文摘要

许多新兴的物联网(IoT)应用程序依赖于传感器节点收集的信息,这些信息是信息的新鲜度是一个重要的标准。 \ textit {信息时代}(AOI)是一个量化信息及时性的度量,即接收到的信息或状态更新的新鲜度。这项工作考虑了在IoT网络中部署的传感器设置,其中多个无人驾驶汽车(UAV)用作传感器和基站之间的移动继电器节点。我们制定了一个优化问题,以共同计划无人机的轨迹,同时最大程度地减少接收到的消息的AOI。这样可以确保基站收到的信息尽可能新鲜。复杂的优化问题使用深度加固学习(DRL)算法有效解决。特别是,我们提出了一个深Q网络,它可以作为函数近似来估计状态行动值函数。所提出的方案很快会收敛,并导致AOI低于随机步行方案。我们提出的算法将平均年龄降低了约25美元\%$,与基线方案相比,所需的能量减少了50 \%$。

Many emerging Internet of Things (IoT) applications rely on information collected by sensor nodes where the freshness of information is an important criterion. \textit{Age of Information} (AoI) is a metric that quantifies information timeliness, i.e., the freshness of the received information or status update. This work considers a setup of deployed sensors in an IoT network, where multiple unmanned aerial vehicles (UAVs) serve as mobile relay nodes between the sensors and the base station. We formulate an optimization problem to jointly plan the UAVs' trajectory, while minimizing the AoI of the received messages. This ensures that the received information at the base station is as fresh as possible. The complex optimization problem is efficiently solved using a deep reinforcement learning (DRL) algorithm. In particular, we propose a deep Q-network, which works as a function approximation to estimate the state-action value function. The proposed scheme is quick to converge and results in a lower AoI than the random walk scheme. Our proposed algorithm reduces the average age by approximately $25\%$ and requires down to $50\%$ less energy when compared to the baseline scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源