论文标题
在强烈相互交互的浮雕系统中逮捕的发展和破碎
Arrested Development and Fragmentation in Strongly-Interacting Floquet Systems
论文作者
论文摘要
我们探讨了相互作用如何促进具有依次激活跳跃模型中的经典动力学。具体而言,我们在哈密顿量增加了本地和短范围的交互项,并要求确保进化的条件在最初的局部数字状态下作为置换。我们表明,在某些跳跃和相互作用的值下,可以实现一组二磷酸方程式,可以实现这种进化。当仅满足双磷酸方程的子集时,希尔伯特空间可以碎裂成冷冻的状态,遵守细胞自动机(如进化)和子空间的状态,其中进化会混合卵子状态,并与表现出高纠缠侵入型和水平排斥的特征性和征为相关。
We explore how interactions can facilitate classical like dynamics in models with sequentially activated hopping. Specifically, we add local and short range interaction terms to the Hamiltonian, and ask for conditions ensuring the evolution acts as a permutation on initial local number Fock states. We show that at certain values of hopping and interactions, determined by a set of Diophantine equations, such evolution can be realized. When only a subset of the Diophantine equations is satisfied the Hilbert space can be fragmented into frozen states, states obeying cellular automata like evolution and subspaces where evolution mixes Fock states and is associated with eigenstates exhibiting high entanglement entropy and level repulsion.