论文标题

5D充电旋转黑洞的热力学:反对处理

Thermodynamics of 5D Charged Rotating Black Holes: A Counterterms Treatment

论文作者

Awad, Adel, ElSayed, Hassan

论文摘要

我们表明,批量理论中热力学体积的计算对双CFT中的共形异常很敏感,并在保形异常不消失时会提出一种计算它的新方法。这解决了反对扣除方法的使用似乎打破了第一定律和Smarr在扩展相空间中的关系。如果在五维最小值的超重力中充电旋转黑洞的情况下,明确显示了这一点(Chong等人在Phys Rev Lett 95:161301,2005中),在此我们使用反式方法来研究该溶液的热力学。使用反对方法计算的大量数量包括溶液的壳动作,总质量和角动量。所有这些数量与以前使用其他方法进行的计算一致。对于边界CFT,我们计算重新归一化的应力张量,共形异常和Casimir能量。使用Papadimitriou-skenderis分析(J. High EnergyPhys。08:004,2005中的Papadimitriou和Skenderis),我们表明,通过反对方法计算得出的质量满足了黑洞热力学的第一定律。为了讨论扩展的热力学,我们使用类似于Papadimitriou-Skenderis的程序将热力学体积的定义扩展到共形异常的病例。我们表明,由于边界指标变化,该卷正确说明了额外的术语。

We show that the calculation of the thermodynamic volume in the bulk theory is sensitive to conformal anomalies in the dual CFT, and present a new way of calculating it when the conformal anomalies do not vanish. This solves the issue where the use of the counterterms subtraction method appears to break the first law and Smarr's relation in extended phase-space. This is shown explicitly in the case of charged rotating black holes in five-dimensional minimal gauged supergravity (Chong et al. in Phys Rev Lett 95:161301, 2005), where we use the counterterms method to study the thermodynamics of the solution. Among the bulk quantities calculated using the counterterms method are the on-shell action, total mass, and angular momenta of the solution. All these quantities are consistent with previous calculations made using other methods. For the boundary CFT, we calculate the renormalized stress tensor, conformal anomaly, and Casimir energy. Using the Papadimitriou-Skenderis analysis (Papadimitriou and Skenderis in J. High Energy Phys. 08:004, 2005), we show that the mass calculated via the counterterms method satisfies the first law of black hole thermodynamics. To discuss extended thermodynamics, we extend the definition of the thermodynamic volume to cases with conformal anomalies using a procedure similar to that of Papadimitriou-Skenderis. We show that this volume correctly accounts for extra terms due to boundary metric variation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源