论文标题
一些嵌套希尔伯特计划的不可约性
Irreducibility of Some Nested Hilbert Schemes
论文作者
论文摘要
令$ s $为$ \ mathbb {c} $的光滑投射表面。令$ s^{[n_1,\ dots,n_k]} $表示嵌套的hilbert方案,该方案参数为零维supschemes $ξ_{n_1} \ subset \ subset \ ldots \ ldots \ subset \ subset之一我们表明$ s^{[n,m]} $,$ s^{[n,m,m+1]} $,$ s^{[n,n,n+1,m]} $,$ s^{[n,n+1,m,m,m+1]} $不可约。
Let $S$ be a smooth projective surface over $\mathbb{C}$. Let $S^{[n_1,\dots,n_k]}$ denote the nested Hilbert scheme which parametrizes zero-dimensional subschemes $ξ_{n_1} \subset \ldots \subset ξ_{n_k}$ where $ξ_i$ is a closed subscheme of $S$ of length $i$. We show that $S^{[n,m]}$, $S^{[n,m,m+1]}$, $S^{[n,n+1,m]}$, $S^{[n,n+1,m,m+1]}$, $S^{[n,n+2,m]}$ and $S^{[n,n+2,m,m+1]}$ are irreducible.