论文标题
脑MRI分割的细心对称自动编码器
Attentive Symmetric Autoencoder for Brain MRI Segmentation
论文作者
论文摘要
基于图像补丁重建的自我监督学习方法在培训自动编码器方面取得了巨大的成功,其预训练的权重可以转移到微调图像理解的其他下游任务。但是,现有方法很少研究重建斑块的各种重要性和解剖结构的对称性,当它们应用于3D医学图像时。在本文中,我们提出了一个基于3D脑MRI分割任务的视觉变压器(VIT)的新颖的对称自动编码器(ASA)。我们猜想,强迫自动编码器恢复信息性图像区域可以收获更多的歧视性表示,而不是恢复光滑的图像贴片。然后,我们采用基于梯度的指标来估计每个图像补丁的重要性。在训练前阶段,根据梯度指标,提议的自动编码器更加注意重建信息贴片。此外,我们求助于大脑结构的先前,并开发一种对称位置编码(SPE)方法,以更好地利用远距离但空间对称区域之间的相关性以获得有效的特征。实验结果表明,我们提出的细心对称自动编码器的表现优于三个大脑MRI分割基准的最先进的自我监督学习方法和医学图像分割模型。
Self-supervised learning methods based on image patch reconstruction have witnessed great success in training auto-encoders, whose pre-trained weights can be transferred to fine-tune other downstream tasks of image understanding. However, existing methods seldom study the various importance of reconstructed patches and the symmetry of anatomical structures, when they are applied to 3D medical images. In this paper we propose a novel Attentive Symmetric Auto-encoder (ASA) based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks. We conjecture that forcing the auto-encoder to recover informative image regions can harvest more discriminative representations, than to recover smooth image patches. Then we adopt a gradient based metric to estimate the importance of each image patch. In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics. Moreover, we resort to the prior of brain structures and develop a Symmetric Position Encoding (SPE) method to better exploit the correlations between long-range but spatially symmetric regions to obtain effective features. Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models on three brain MRI segmentation benchmarks.