论文标题

几何布朗信息引擎:最佳性能的必需品

Geometric Brownian Information Engine: Essentials for the best performance

论文作者

Rafeek, Rafna, Ali, Syed Yunus, Mondal, Debasish

论文摘要

我们在存在无错误的反馈控制器的情况下研究了几何布朗信息引擎(GBIE),该信息将收集在单叶几何限制中的布朗颗粒状态的信息转换为可提取的工作。信息引擎的结果取决于参考测量距离$ x_m $,反馈网站$ x_f $和横向力$ g $。我们确定用于在输出工作中利用可用信息的基准和最佳操作必需品,以最佳工作提取。横向偏置力($ g $)在有效的潜力中调整了熵的贡献,因此,平衡边缘概率分布的标准偏差($σ$)。我们认识到,当$ x_f = 2x_m $带有$ x_m \ sim0.6σ$时,提取的工作量达到全局最大值,无论熵限制的程度如何。由于在放松过程中信息丢失较高,因此在熵系统中,GBIE的最佳可实现工作较低。反馈调节还具有颗粒的单向传递。平均位移随着熵控制的增长而增加,并且当$ x_m \ sim0.81σ$时,最大位移是最大的。最后,我们探讨了信息引擎的功效,该数量可以调节利用所获取的信息的效率。 $ x_f = 2x_m $,随着熵控制的增加,最大效能会降低,并显示出从$ 2 $到$ 11/9 $的交叉。我们发现,最佳疗效的条件仅取决于沿反馈方向的限制长度尺度。更广泛的边际概率分布认可了循环中平均位移的增加,而熵为主导的系统中的疗效较低。

We investigate a Geometric Brownian Information Engine (GBIE) in the presence of an error-free feedback controller that transforms the information gathered on the state of Brownian particles entrapped in monolobal geometric confinement into extractable work. Outcomes of the information engine depend on the reference measurement distance $x_m$, feedback site $x_f$ and the transverse force $G$. We determine the benchmarks for utilizing the available information in an output work and the optimum operating requisites for best work extraction. Transverse bias force ($G$) tunes the entropic contribution in the effective potential and hence the standard deviation ($σ$) of the equilibrium marginal probability distribution. We recognize that the amount of extracted work reaches a global maximum when $x_f = 2x_m$ with $x_m \sim 0.6σ$, irrespective of the extent of the entropic limitation. Because of the higher loss of information during the relaxation process, the best achievable work of a GBIE is lower in an entropic system. The feedback regulation also bears the unidirectional passage of particles. The average displacement increases with growing entropic control and is maximum when $x_m \sim 0.81σ$. Finally, we explore the efficacy of the information engine, a quantity that regulates the efficiency in utilizing the information acquired. With $x_f=2x_m$, the maximum efficacy reduces with increasing entropic control and shows a cross over from $2$ to $11/9$. We discover that the condition for the best efficacy depends only on the confinement length scale along the feedback direction. The broader marginal probability distribution accredits the increased average displacement in a cycle and the lower efficacy in an entropy-dominated system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源