论文标题

生成图形逆运动学

Generative Graphical Inverse Kinematics

论文作者

Limoyo, Oliver, Marić, Filip, Giamou, Matthew, Alexson, Petra, Petrović, Ivan, Kelly, Jonathan

论文摘要

对于许多机器人操纵器来说,快速,可靠地找到准确的逆运动学(IK)解决方案仍然是一个具有挑战性的问题。现有的数值求解器广泛适用,但通常仅产生单个解决方案,并依靠本地搜索技术来最大程度地减少非convex目标函数。近似于整个可行解决方案集的基于学习的方法已显示出有望,作为生成多个快速准确的IK产生并联的一种手段。但是,现有的基于学习的技术具有重要的缺点:每个感兴趣的机器人都需要一个专门的模型,必须从头开始训练。为了解决这一关键的缺点,我们提出了一种新型的距离几何机器人表示,并结合了图形结构,使我们能够利用Euclidean Equivariant函数的样品效率和图形神经网络(GNNS)的普遍性。我们的方法是生成的图形逆运动学(GGIK),这是第一个学到的IK求解器,能够并行能够准确有效地生产出大量不同的解决方案,同时还显示了概括的能力 - 单个学识渊博的模型可用于为各种不同机器人生产IK解决方案。与其他几种学到的IK方法相比,GGIK提供了具有相同数据量的更准确的解决方案。 GGIK可以很好地概括培训期间的机器人操纵器。此外,GGIK可以学习一个受约束的分布,该分布编码关节限制并有效地尺度到更大的机器人和大量的采样溶液。最后,GGIK可用于通过为本地优化过程提供可靠的初始化来补充本地IK求解器。

Quickly and reliably finding accurate inverse kinematics (IK) solutions remains a challenging problem for many robot manipulators. Existing numerical solvers are broadly applicable but typically only produce a single solution and rely on local search techniques to minimize nonconvex objective functions. More recent learning-based approaches that approximate the entire feasible set of solutions have shown promise as a means to generate multiple fast and accurate IK results in parallel. However, existing learning-based techniques have a significant drawback: each robot of interest requires a specialized model that must be trained from scratch. To address this key shortcoming, we propose a novel distance-geometric robot representation coupled with a graph structure that allows us to leverage the sample efficiency of Euclidean equivariant functions and the generalizability of graph neural networks (GNNs). Our approach is generative graphical inverse kinematics (GGIK), the first learned IK solver able to accurately and efficiently produce a large number of diverse solutions in parallel while also displaying the ability to generalize -- a single learned model can be used to produce IK solutions for a variety of different robots. When compared to several other learned IK methods, GGIK provides more accurate solutions with the same amount of data. GGIK can generalize reasonably well to robot manipulators unseen during training. Additionally, GGIK can learn a constrained distribution that encodes joint limits and scales efficiently to larger robots and a high number of sampled solutions. Finally, GGIK can be used to complement local IK solvers by providing reliable initializations for a local optimization process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源