论文标题
两视图知识图的双几何空间嵌入模型
Dual-Geometric Space Embedding Model for Two-View Knowledge Graphs
论文作者
论文摘要
两视图知识图(kgs)共同代表两个组成部分:抽象和常识概念的本体论观点,以及针对本体论概念实例化的特定实体的实例视图。因此,这些KG包含来自实例视图的本体学和周期性的分层的异质结构。尽管在公斤中有这些不同的结构,但最新的嵌入kg的作品假设整个kg仅属于两个观点之一,但并非同时属于。对于试图将KG视图置于的著作,假定实例和本体论视图属于相同的几何空间,例如所有嵌入在同一欧几里得空间中的节点或非欧国人产品空间,这是不再合理的,对于图形不同结构的不同部分而言,两种kg的假设不再是合理的。为了解决此问题,我们定义并构建了一个双几何空间嵌入模型(DGS),该模型使用复杂的非欧盟几何几何空间对两视图KG进行建模,该模型通过将不同部分的KG嵌入不同的几何学空间中。 DGS利用球形空间,双曲线空间及其在统一框架中学习嵌入的框架中的相交空间。此外,对于球形空间,我们提出了直接在球形空间中运行的新型封闭的球形空间操作员,而无需映射到近似切线空间。公共数据集的实验表明,DGS在KG完成任务上的先前最先进的基线模型明显优于先前的基线模型,这表明了其在KGS中更好地建模异质结构的能力。
Two-view knowledge graphs (KGs) jointly represent two components: an ontology view for abstract and commonsense concepts, and an instance view for specific entities that are instantiated from ontological concepts. As such, these KGs contain heterogeneous structures that are hierarchical, from the ontology-view, and cyclical, from the instance-view. Despite these various structures in KGs, most recent works on embedding KGs assume that the entire KG belongs to only one of the two views but not both simultaneously. For works that seek to put both views of the KG together, the instance and ontology views are assumed to belong to the same geometric space, such as all nodes embedded in the same Euclidean space or non-Euclidean product space, an assumption no longer reasonable for two-view KGs where different portions of the graph exhibit different structures. To address this issue, we define and construct a dual-geometric space embedding model (DGS) that models two-view KGs using a complex non-Euclidean geometric space, by embedding different portions of the KG in different geometric spaces. DGS utilizes the spherical space, hyperbolic space, and their intersecting space in a unified framework for learning embeddings. Furthermore, for the spherical space, we propose novel closed spherical space operators that directly operate in the spherical space without the need for mapping to an approximate tangent space. Experiments on public datasets show that DGS significantly outperforms previous state-of-the-art baseline models on KG completion tasks, demonstrating its ability to better model heterogeneous structures in KGs.