论文标题

基于数据驱动和机器学习的基于大坝破洪水中波传播行为的预测

Data-driven and machine-learning based prediction of wave propagation behavior in dam-break flood

论文作者

Li, Changli, Han, Zheng, Li, Yange, Li, Ming, Wang, Weidong

论文摘要

大坝破洪水中波传播的计算预测是流体动力学和水文学中的长期问题。到目前为止,基于圣人方程的常规数值模型是主要方法。在这里,我们表明,以最少的数据训练的机器学习模型可以帮助预测一维大坝爆发洪水的长期动态行为,并具有令人满意的精度。为此,我们使用lax-wendroff数值方案来解决一维大坝洪水方案的圣人方程,并通过由时间序列深度组成的仿真结果训练储层计算计算机网络(RC-ESN)。我们展示了RC-ESN模型的良好预测能力,该模型预测波浪传播行为286在大坝破坏洪水中的时步,均方根误差(RMSE)小于0.01,表现出了传统的长短短期内存(LSTM)模型的表现,该模型仅能达到一个可比较的RMSE,仅能达到81个时间步长。为了显示RC-ESN模型的性能,我们还提供了有关关键参数的预测准确性的灵敏度分析,包括训练集大小,储层大小和光谱半径。结果表明,RC-ESN较少依赖训练集的大小,培养基尺寸k = 1200〜2600就足够了。我们确认光谱半径\ r {ho}对预测准确性显示了复杂的影响,并建议当前较小的光谱半径\ r {ho {ho}。通过改变大坝断裂的初始流程深度,我们还得出了一个结论,即RC-ESN的预测范围大于LSTM的预测范围。

The computational prediction of wave propagation in dam-break floods is a long-standing problem in hydrodynamics and hydrology. Until now, conventional numerical models based on Saint-Venant equations are the dominant approaches. Here we show that a machine learning model that is well-trained on a minimal amount of data, can help predict the long-term dynamic behavior of a one-dimensional dam-break flood with satisfactory accuracy. For this purpose, we solve the Saint-Venant equations for a one-dimensional dam-break flood scenario using the Lax-Wendroff numerical scheme and train the reservoir computing echo state network (RC-ESN) with the dataset by the simulation results consisting of time-sequence flow depths. We demonstrate a good prediction ability of the RC-ESN model, which ahead predicts wave propagation behavior 286 time-steps in the dam-break flood with a root mean square error (RMSE) smaller than 0.01, outperforming the conventional long short-term memory (LSTM) model which reaches a comparable RMSE of only 81 time-steps ahead. To show the performance of the RC-ESN model, we also provide a sensitivity analysis of the prediction accuracy concerning the key parameters including training set size, reservoir size, and spectral radius. Results indicate that the RC-ESN are less dependent on the training set size, a medium reservoir size K=1200~2600 is sufficient. We confirm that the spectral radius \r{ho} shows a complex influence on the prediction accuracy and suggest a smaller spectral radius \r{ho} currently. By changing the initial flow depth of the dam break, we also obtained the conclusion that the prediction horizon of RC-ESN is larger than that of LSTM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源