论文标题
Activenerf:通过不确定性估计来学习在哪里看
ActiveNeRF: Learning where to See with Uncertainty Estimation
论文作者
论文摘要
最近,神经辐射场(NERF)在重建3D场景并从一组稀疏的2D图像中综合新视图方面表现出了有希望的表演。尽管有效,但NERF的性能受到训练样品质量的很大影响。由于现场的有限姿势图像,Nerf无法很好地推广到新颖的观点,并且可能会崩溃到未观察到的区域中的琐碎解决方案。这使得Nerf在资源约束的情况下不切实际。在本文中,我们提出了一个新颖的学习框架Activenerf,旨在建模一个3D场景,并具有限制的输入预算。具体而言,我们首先将不确定性估计纳入NERF模型,该模型在很少的观察下确保了鲁棒性,并提供了NERF如何理解场景的解释。在此基础上,我们建议根据积极学习方案将现有的培训设置补充新捕获的样本。通过评估给定新输入的不确定性的降低,我们选择带来最多信息增益的样本。这样,可以通过最少的额外资源来提高新型视图合成的质量。广泛的实验验证了我们模型在现实和合成场景上的性能,尤其是在稀缺的训练数据中。代码将在\ url {https://github.com/leaplabthu/activenerf}上发布。
Recently, Neural Radiance Fields (NeRF) has shown promising performances on reconstructing 3D scenes and synthesizing novel views from a sparse set of 2D images. Albeit effective, the performance of NeRF is highly influenced by the quality of training samples. With limited posed images from the scene, NeRF fails to generalize well to novel views and may collapse to trivial solutions in unobserved regions. This makes NeRF impractical under resource-constrained scenarios. In this paper, we present a novel learning framework, ActiveNeRF, aiming to model a 3D scene with a constrained input budget. Specifically, we first incorporate uncertainty estimation into a NeRF model, which ensures robustness under few observations and provides an interpretation of how NeRF understands the scene. On this basis, we propose to supplement the existing training set with newly captured samples based on an active learning scheme. By evaluating the reduction of uncertainty given new inputs, we select the samples that bring the most information gain. In this way, the quality of novel view synthesis can be improved with minimal additional resources. Extensive experiments validate the performance of our model on both realistic and synthetic scenes, especially with scarcer training data. Code will be released at \url{https://github.com/LeapLabTHU/ActiveNeRF}.