论文标题
基于动态控制屏障功能的模型模型预测控制移动机器人的安全至关重要障碍物
Dynamic Control Barrier Function-based Model Predictive Control to Safety-Critical Obstacle-Avoidance of Mobile Robot
论文作者
论文摘要
本文提出了一种有效且安全的方法,以避免基于LIDAR的静态和动态障碍。首先,点云用于生成实时的本地网格映射以进行障碍物检测。然后,障碍物由DBSCAN算法聚集,并用最小边界椭圆(MBE)包围。此外,进行数据关联是为了使每个MBE与当前帧中的障碍匹配。考虑到MBE作为观察,Kalman滤波器(KF)用于估计和预测障碍的运动状态。通过这种方式,可以将远期时间域中每个障碍物的轨迹作为一组椭圆形。由于MBE的不确定性,参数化椭圆的半束和半尺寸轴被扩展以确保安全性。我们扩展了传统的控制屏障功能(CBF),并提出动态控制屏障功能(D-CBF)。我们将D-CBF与模型预测控制(MPC)结合起来,以实现安全至关重要的动态障碍。进行了模拟和实际场景中的实验,以验证我们算法的有效性。源代码发布以供社区参考。
This paper presents an efficient and safe method to avoid static and dynamic obstacles based on LiDAR. First, point cloud is used to generate a real-time local grid map for obstacle detection. Then, obstacles are clustered by DBSCAN algorithm and enclosed with minimum bounding ellipses (MBEs). In addition, data association is conducted to match each MBE with the obstacle in the current frame. Considering MBE as an observation, Kalman filter (KF) is used to estimate and predict the motion state of the obstacle. In this way, the trajectory of each obstacle in the forward time domain can be parameterized as a set of ellipses. Due to the uncertainty of the MBE, the semi-major and semi-minor axes of the parameterized ellipse are extended to ensure safety. We extend the traditional Control Barrier Function (CBF) and propose Dynamic Control Barrier Function (D-CBF). We combine D-CBF with Model Predictive Control (MPC) to implement safety-critical dynamic obstacle avoidance. Experiments in simulated and real scenarios are conducted to verify the effectiveness of our algorithm. The source code is released for the reference of the community.