论文标题

RDD2022:自动道路损害检测的跨国图像数据集

RDD2022: A multi-national image dataset for automatic Road Damage Detection

论文作者

Arya, Deeksha, Maeda, Hiroya, Ghosh, Sanjay Kumar, Toshniwal, Durga, Sekimoto, Yoshihide

论文摘要

数据文章介绍了路线损坏数据集RDD2022,其中包括来自六个国家,日本,印度,捷克共和国,挪威,美国和中国的47,420条道路图像。图像已注释了55,000多个道路损坏的情况。数据集中捕获了四种类型的道路损坏,即纵向裂缝,横向裂纹,鳄鱼裂纹和坑洼。设想注释的数据集用于开发基于深度学习的方法以自动检测和对道路损害进行分类。该数据集已作为基于人群感应的道路伤害检测挑战(CRDDC2022)的一部分发布。 CRDDC2022的挑战邀请了来自全球的研究人员提出解决方案,以在多个国家 /地区自动道路损害检测。市政当局和公路机构可以使用RDD2022数据集,并且使用RDD2022培训的模型用于低成本自动监测道路状况。此外,计算机视觉和机器学习研究人员可能会使用数据集对其他类型的其他基于图像的应用程序(分类,对象检测等)进行不同算法的性能。

The data article describes the Road Damage Dataset, RDD2022, which comprises 47,420 road images from six countries, Japan, India, the Czech Republic, Norway, the United States, and China. The images have been annotated with more than 55,000 instances of road damage. Four types of road damage, namely longitudinal cracks, transverse cracks, alligator cracks, and potholes, are captured in the dataset. The annotated dataset is envisioned for developing deep learning-based methods to detect and classify road damage automatically. The dataset has been released as a part of the Crowd sensing-based Road Damage Detection Challenge (CRDDC2022). The challenge CRDDC2022 invites researchers from across the globe to propose solutions for automatic road damage detection in multiple countries. The municipalities and road agencies may utilize the RDD2022 dataset, and the models trained using RDD2022 for low-cost automatic monitoring of road conditions. Further, computer vision and machine learning researchers may use the dataset to benchmark the performance of different algorithms for other image-based applications of the same type (classification, object detection, etc.).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源