论文标题
相互无偏的三方的新型结构绝对最大纠缠的基础
Novel Constructions of Mutually Unbiased Tripartite Absolutely Maximally Entangled Bases
论文作者
论文摘要
我们开发了一种新技术来构建互无偏的三方绝对最大的纠缠基碱。我们首先在$ \ mathbb {C}^{d} \ otimes \ Mathbb {c}^{d} \ otimes \ otimes \ Mathbb {C}^{d} $基于相互的Orthogalial Orthogallialical Orthogonal latin latin latin squels中。然后,我们将方法概括为$ \ mathbb {c}^{d_ {d_ {1}} \ otimes \ Mathbb {c}^{d_ {2}} \ otimes \ otime \ otime \ m m mathbb {c}^{c}^{d _ {d_ {1} d_ {2} d_ {2} d_ {2}}}相互无偏的三方的简洁直接结构绝对是最大的纠缠基地,并具有普遍性。 $ \ MathBb {C}^{3} \ otimes \ Mathbb {C}^{3} {3} \ otimes \ Mathbb {C}^{3},$ \ Mathbb {3},$ \ otimes \ Mathbb {C}^{4} $和$ \ Mathbb {C}^{2} \ otimes \ Mathbb {C}^{5} \ otimes \ otimes \ otimes \ Mathbb {c}^{10} $可说明我们方法的优势。
We develop a new technique to construct mutually unbiased tripartite absolutely maximally entangled bases. We first explore the tripartite absolutely maximally entangled bases and mutually unbiased bases in $\mathbb{C}^{d} \otimes \mathbb{C}^{d} \otimes \mathbb{C}^{d}$ based on mutually orthogonal Latin squares. Then we generalize the approach to the case of $\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{d_{1}d_{2}}$ by mutually weak orthogonal Latin squares. The concise direct constructions of mutually unbiased tripartite absolutely maximally entangled bases are remarkably presented with generality. Detailed examples in $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3},$ $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \otimes \mathbb{C}^{4}$ and $\mathbb{C}^{2} \otimes \mathbb{C}^{5} \otimes \mathbb{C}^{10}$ are provided to illustrate the advantages of our approach.