论文标题

Dirichlet和Robin边界价值问题解决方案的Steklov-Spectral方法

A Steklov-spectral approach for solutions of Dirichlet and Robin boundary value problems

论文作者

Imeri, Kthim, Nigam, Nilima

论文摘要

在本文中,我们重新审视了Auchmuty开创的一种方法,以近似Laplace-Robin边界价值问题的解决方案。与其他光谱方法相反,我们证明了这种方法对大量非感情领域的功效。 我们建立一个光谱近似定理,显示了用于平滑域和平滑边界数据的steklov本特征函数数量的指数快速数值评估。对于非平滑域或非平滑边界数据,观察到多项式快速数值评估。另外,我们还证明了steklov特征函数的规律性的新结果,具体取决于域边界的规律性。 我们描述了三种计算steklov本征函数的数值方法。

In this paper we revisit an approach pioneered by Auchmuty to approximate solutions of the Laplace- Robin boundary value problem. We demonstrate the efficacy of this approach on a large class of non-tensorial domains, in contrast with other spectral approaches for such problems. We establish a spectral approximation theorem showing an exponential fast numerical evaluation with regards to the number of Steklov eigenfunctions used, for smooth domains and smooth boundary data. A polynomial fast numerical evaluation is observed for either non-smooth domains or non-smooth boundary data. We additionally prove a new result on the regularity of the Steklov eigenfunctions, depending on the regularity of the domain boundary. We describe three numerical methods to compute Steklov eigenfunctions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源