论文标题
自动驾驶中移动对象检测的RGB事件融合
RGB-Event Fusion for Moving Object Detection in Autonomous Driving
论文作者
论文摘要
移动对象检测(MOD)是成功实现安全自动驾驶的关键视觉任务。尽管深度学习方法的结果合理,但大多数现有方法仅基于框架,并且在与动态的交通参与者打交道时可能无法达到合理的性能。传感器技术的最新进展,尤其是事件摄像头,自然可以补充传统的摄像头方法,以更好地模型移动对象。但是,基于事件的作品通常会采用预定义的时间窗口进行事件表示,并简单地将其集成以估算事件的图像强度,从而忽略了可用异步事件的许多丰富时间信息。因此,从新的角度来看,我们提出了一种新型的RGB事件融合网络Renet,它共同利用了两种互补方式,以在充满挑战的场景中实现更强大的MOD来实现自主驾驶。具体而言,我们首先设计一个时间多尺度聚合模块,以完全利用RGB曝光时间和较大间隔的事件框架。然后,我们引入一个双向融合模块,以认真校准和融合多模式特征。为了评估我们的网络性能,我们仔细选择并从常用的DSEC数据集中选择一个子模型数据集。广泛的实验表明,我们提出的方法的性能明显优于最新的RGB事件融合替代方法。源代码和数据集可公开可用:https://github.com/zzy-zhou/renet。
Moving Object Detection (MOD) is a critical vision task for successfully achieving safe autonomous driving. Despite plausible results of deep learning methods, most existing approaches are only frame-based and may fail to reach reasonable performance when dealing with dynamic traffic participants. Recent advances in sensor technologies, especially the Event camera, can naturally complement the conventional camera approach to better model moving objects. However, event-based works often adopt a pre-defined time window for event representation, and simply integrate it to estimate image intensities from events, neglecting much of the rich temporal information from the available asynchronous events. Therefore, from a new perspective, we propose RENet, a novel RGB-Event fusion Network, that jointly exploits the two complementary modalities to achieve more robust MOD under challenging scenarios for autonomous driving. Specifically, we first design a temporal multi-scale aggregation module to fully leverage event frames from both the RGB exposure time and larger intervals. Then we introduce a bi-directional fusion module to attentively calibrate and fuse multi-modal features. To evaluate the performance of our network, we carefully select and annotate a sub-MOD dataset from the commonly used DSEC dataset. Extensive experiments demonstrate that our proposed method performs significantly better than the state-of-the-art RGB-Event fusion alternatives. The source code and dataset are publicly available at: https://github.com/ZZY-Zhou/RENet.