论文标题
用于测量微米长度材料导热率的频域探针梁挠度方法
Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale
论文作者
论文摘要
时间域的热心型(TDTR)和频域热素(FDTR)已被广泛用于非接触式测量具有高空间分辨率的材料的各向异性导热率。然而,高热素控性系数的需求限制了金属涂料和激光波长的选择。测量的准确性通常受到对激光束的半径的高灵敏度的限制。我们描述了一种基于探针梁偏转的替代频域泵探针技术。梁挠度主要是由样品表面的热弹性变形引起的,其大小由大块材料的热膨胀系数确定。我们为耦合弹性和热扩散方程提供了分析解决方案,以定期加热具有各向异性弹性常数,导热率和热膨胀系数的多层样品。在大多数情况下,简化的模型可以可靠地描述光束偏转信号的频率依赖性,而无需了解材料的弹性常数和热膨胀系数。如果热膨胀系数大于5x10^(-6) /k,则探针束偏转信号的大小大于表面温度可实现的最大幅度。当使用较大的光束偏移时,抑制对激光束半径的敏感性。我们发现测量的信号和模型预测的几乎完美匹配,并测量跨越聚合物到黄金范围的材料的6%以内的热导率,0.1-300 w/(m k)。
Time-domain thermoreflectance (TDTR) and frequency-domain thermoreflectance (FDTR) have been widely used for non-contact measurement of anisotropic thermal conductivity of materials with high spatial resolution. However, the requirement of high thermoreflectance coefficient restricts the choice of metal coating and laser wavelength. The accuracy of the measurement is often limited by the high sensitivity to the radii of the laser beams. We describe an alternative frequency-domain pump-probe technique based on probe beam deflection. The beam deflection is primarily caused by thermoelastic deformation of the sample surface with a magnitude determined by the thermal expansion coefficient of the bulk material to measure. We derive an analytical solution to the coupled elasticity and heat diffusion equations for periodic heating of a multilayer sample with anisotropic elastic constants, thermal conductivity, and thermal expansion coefficients. In most cases, a simplified model can reliably describe the frequency dependence of the beam deflection signal without knowledge of the elastic constants and thermal expansion coefficients of the material. The magnitude of the probe beam deflection signal is larger than the maximum magnitude achievable by thermoreflectance detection of surface temperatures if the thermal expansion coefficient is greater than 5x10^(-6) /K. The sensitivity to laser beam radii is suppressed when a larger beam offset is used. We find nearly perfect matching of the measured signal and model prediction, and measure thermal conductivities within 6% of accepted values for materials spanning the range of polymers to gold, 0.1 - 300 W/(m K).